Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

@ ecsa Issue Page Date Ke ensca p

-y emmen agrcutural polcy
1.0 1 31/03/2024 g SR—_—

Sen4CAP - Sentinels for Common
Agricultural Policy

Design Justification File
ATBD for Category Change detection

senscap

//// common agricultural policy

UlanSsil'c-é /& @ SINERGISE

catholique ROMANIA
deLouvain

Milestone CCN2 - Milestone 2

Maxime TROIANI, Diane HEYMANS, Sophie BONTEMPS, Pierre

Authors DEFOURNY, Laurentiu NICOLA, Cosmin UDROIU

Distribution ESA - Zoltan SZANTOI

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

@cesa

Ref

Sen4CAP_DDF-ATBD-ChangeCat v1.0

Issue

Page

Date

1.0

2

31/03/2024

g senscap

(// 7/ caemmen agricuitunal policy

This page is intentionally left blank

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref

Sen4CAP_DDF-ATBD-ChangeCat v1.0

@ esa Issue Page Date é:: ” cap
1.0 3 31/03/2024 W S~
Table of recorded changes
Version Date Reason
V0.1 19/07/2023 Internal version
v1.0 31/03/2024 First version released to ESA and published on the website

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref

Sen4CAP_DDF-ATBD-ChangeCat v1.0

(ﬁ ecsa Issue

Page Date

1.0

4 31/03/2024

Table of contents

N =

9,

~

Logical model — overview Of the PrOCESSOT........c.uiiiiiieriiiiecieeie ettt ere b b reesseeseee 8
INPUL dAta PIEPATALIONecuvieiieiieriieeiie et et et et et eete et e esbeebe e saesseessseesseesseessaessaesseesssesseesssensss 10
2.1 Subsidy application LaYeTcceeiieiiiiieiieeie ettt es 10
2.1.1 Standardized subsidy application layer with quality flagscccceeeviieviiencrieeiienee, 10
2.1.2 (3¢e] oI o7 ¢ [0 1 U 10 OSSP 11
2.2 Optical data from MDBIccoiiiiiiit et e 12
2.3 Optical and SAR data from MDB LAAcccoiiiiiiiiieeeceeeee et 13
MATKEIS ZENETALIONeecvvieiiieiieiieiieeteereeteereesteesteestbestaessbeesseesseessaesssesssessseasseassaesseesssesssessseenns 14
3.1 Bare 01l MATKETSoo.eeiiiiiiiiieeee ettt 15
3.2 Vegetation growth Markerc.oooiiiiiiiiiiic e 16
33 Vegetation stability and outlier CONSECULIVENESScccveevierreerreeriierienreereesseesseesseesenesenenns 19
A 33 o ES: 1 1 =1 3 PSSP 26
4.1 Change SCOTE COMPULATIONevueruteriiriieierieetenteeitete st ettt ettt sbe et e b e ste bt sbeeeesbeeareneesaeens 26
4.2 TresholdSs OPHIMIZATION.ccuviiiiiiiiiieciee ettt e et e e e et eesebeeetbeesebeeeseeesesaeenseeenenes 28
Results consolidation with L4A processor reSUILS..........cvvirierieiiieeieeieereeieeseeseesreereesreene e 31
Output and INEEIPIETATIONeeutitiriieierteeit ettt ettt et sb et b et et bt et bt et eanenees 32
APPEIAICES ..oneviiiiiieciiieciee et ett et e ettt e et e e tae e st e e ebbe e tbeeasbaeetbaeesbeeentae e tbeearbaeetbeeasbeeasaeeanraeans 36

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

A Issue Page Date V ca
Eesa s sens

1.0 5 31/03/2024 SR

List of figures

Figure 1-1. General workflow of the L4F category change algoritRm...................cccoueeeeveeeeeceeeeeiieeeeiieeeecieeeeeann 9
Figure 6-1. INterpretation Gridooeeeeeeee et e e e e e ettt e e e e e ettt a e e e e s e sateaaaaeasassssseaaseessssssssnaaeeaias 34

List of tables

Table 2-1. Standardized subsidy application layer with quUAlity flagscoocveeeeeveieeeeiieeciieeeecieeeeiiee s, 10
Table 2-2. Content of the standardized subsidy application layer with quality flags.............cccooueeevvveeecvveesnennn. 10
Table 2-3. Content Of the LAA Crop COAE LUTooeueeeeeeeee ettt et e ettt e e e sta e e st aessssaaasasseseeanseaassasenann 11
Table 3-1. Parameters of the Bare Soil Processor to be run in the Category Change Detection Processor........... 15
Table 3-2. Inputs for the extraction of the vegetation growth and bare soil markers algorithm 17
Table 3-3. Inputs and outputs of the LAl reference dataframe construction function..............cccceccevveeeecuvveeennnn.. 20
Table 3-4. Inputs and Outputs of the vegetation stability and outlier consecutiveness functions........................ 23
Table 4-1. Change score computation : TreSNOIAS VAIUES P1cccuuveeeeeeieeiiieeeeieeeeeceeeecieeeeseseeeiasaaesreeaaas 26
Table 4-2. Change score computation : TreSNOIAS VAIUES P2cccuueeeeeeeeeeiiieeeeieeeeecieeeciteeeesieseeesivaaesireeaeas 27
TADIE 6-1. CSV OULPUL CONTONT.......eeeeeeeeeeeeeeeeeeeee e et ee e ettt e e e et e e e e ste e e aasteaeasteaeasteaesasssaaessesassnsssasansseseasseanas 32

List of algorithms

Algorithm 3-1. Importing Necessary PYLAON [IDIAIIES..............oeeeeeeeeueeeeeieeeeectiee e ee et a e ettt e e e e e e sstraaaaaeeesns 14
Algorithm 3-2. Defining key variables to access the machine and SPecCifiC Siteccueeevvueeeecveeecieeeeccreeennn, 14
Algorithm 3-3. Defining needed keys and variables to access the Sen4CAP machine APIccueeeevvvveennnen.. 14
Algorithm 3-4. Listing available S2 markers from MDB LAAooooueeeeeeeeeesieeeeeeeeeeteaeesiaeeeesreaaeeiasaaesaaeas 15
Algorithm 3-5. Function to compute the area UNder tRE CUIVE.............c.c.ueeeeceeeeieieeesieeeeseeaeesieeeesireeaesissaaesnees 17
Algorithm 3-6. Vegetation growth and Bare soil markers eXtractionccocceevvueereeeeneeeseeeseeeseenieeesieenaees 18
Algorithm 3-7. Mean LAl reference dataframe CONStIUCLIONccc.eevueereeenieesieesiieeseeeiee e 20
Algorithm 3-8. Reference dataframes diCtionNQry CrEALION................ceeccueeeeciueeeeeeieeeeiieeeeeeeeeeeeeeeseteeeeecreaeeaeeas 21
Algorithm 3-9. LAl outliers consecutivensess fUNCLIONoceecueeeeiiueeeecieeeeeeeeeeseeeesteeeeeiaeaeesreaeesseseessenas 22
Algorithm 3-10. Vegetation stability and consecutiveness markers computation..............cccceeecvveeeevvveeeccveeeennn 24
Algorithm 4-1. Application Of treSNOIA VAIUES..............ccccuveeeeeeieeeceeeeeeeee ettt e e tee e e eaa e et rae e e et e e e sssaaesseeaas 27
AIGorithm 4-2. CRGNGE PIrEICLIONoeeeeeeeeeeeee e ee et e e e tee e et e e ettt e et e e e s teeeesteeaeastaaeassesasassesesssseaesssseanns 28
Algorithm 4-3. Optimization QIGOIIEAMc..veeeeeeeeeeee ettt e st et e e e ettt e e st a e s taaaaessteaesssseasessseeaas 28
Algorithm 5-1. Consolition of change prediction With LAA FESUILScoccueerueereeenieesieeseeeeeeee e 31
Algorithm 5-2. Consolidated chAnge PrediCtion...............ouueeeeeenieeseiesiieee ettt 31
Algorithm 7-1. LPIS StANAQITIZAION............coeeeeeeeieeee et e ettt e e e ettt e e e e e e st e e e e e e s sssssesaaeeesssssssaaaeeaas 36

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to @
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

C‘, esa Issue Page Date g: cap

(// 7/ caemmen agricuitunal policy

1.0 6 31/03/2024
References
ID Title
Sen4CAP Design Definition File - ATBD for the Subsidy Application Layer Preparation, version 1.1,
RD.1
30 March 2021
RD.2 Sen4CAP Design Justification File: ATBD for Markers DataBase (July 2022) version 1.0
RD.3 Sen4CAP Design Justification File: ATBD for Bare Soil detection (March 2023) version 1.1
RD.4 Sen4CAP Design Justification File: ATBD for Crop Type mapping (April 2021) version 1.3

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

@ esa Issue Page Date &g cap

1.0 7 31/03/2024 Y E——

List of acronyms

Acronym Definition

ATBD Algorithm Theoretical Basis Document
AL Arable Land

BS Bare Soil

BSI Bare Soil Index

EAA Eligible Agricultural Area

GSAA GeoSpatial Aid Application

LPIS Land Parcel Identification System
LUT Look-Up Table

NBS Non-Bare Soil

NDTI Normalized Difference Tillage Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
MDB Marker DataBase

ROI Region Of Interest

RF Random Forest

S1 Sentinel-1

S2 Sentinel-2

SAR Synthetic Aperture Radar

Sen2-Agri Sentinel-2 for Agriculture

SWIR Short-Wave Infrared

ut™Mm Universal Transvere Mercator

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

@ eésa Issue Page Date &:‘.} cap

1.0 8 31/03/2024 S~

1. Logical model — overview of the processor

The purpose of the ‘Category Change dectection’ is to detect changes in agricultural category from one
agricultural season to the next. Agricultural categories are the following:

e Arable lands (temporary grasslands & annual croplands);
e Permanent grasslands;
e Permanent croplands.

Some changes are undetectable or simply impossible. Others are equally unlikely. The processor has
been developed to determine the probability of different changes based on the calculation of vegetation
markers derived from the processing of Sentinel-1 and Sentinel-2 images.

Based on these markers, an analysis is performed to give an indication of the likelihood of a change
occurring. A large part of this processor is intended to be adapted by the user through the use of Jupyter
Notebook. A reading key is also provided at the end of the document to help the user interpret the results
of the processor. As the change detection is carried out over periods of two years (n-1 and n), two sites
have to be created and therefore all consecutive steps will be performed for each site independentely.
Enventually, the results for both periods are concatenated.

Figure presents the general workflow of the algorithm for detection category changes which is organized
into 4 main components:

1. Input data preparation:
a. Declaration data (hereafter referred to as “subsidy application layer”);
b. Optical data;
c. SAR data;

2. Markers generation (for two successive periods):
a. Bare soil markers (based on the bare soil processor);
b. Vegetation stability, outlier consecutivensess and growing markers;

3. Markers analysis (for two successive periods);

4. Results verification based on L4A crop type classification.

The algorithm relies both S1 and S2 time series. Optical and SAR data pre-processing is done in the
Sen4CAP system. From the pre-processed data, S1 and S2 signal statistics extractions are performed at
the parcel-level and stored into the markers database (MDB). The S2 time series are stored into the
MDBI! that contains therefore the basic single-date markers of S2 bands and L3B variables. S2 time
series are also stored into the MDB L4A', in the form of 10-day resampled values. The S1 time series,
on the other hand, are generated using weekly resampled images extracted at the parcel level and stored
in the MDB L4A".

In the following sections, the different steps are presented in details. For most of these steps, the specific
input and output variables, as well as the code or pseudo-code, are given.

! In the actual system v3.1
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

(é esa Issue Page Date & senscap

1.0 9 31/03/2024 T

Input data preparation

LPIS + crop code LUT (Y0) |

| LPIS + crop code LUT (Y1)

Markers generation : - Markers generation
P1 (Sep-Dec) P2 (Jan-June)
S1time series | > L4E - BS Calibration + Model
(MDB L4A — SAR MAIN) . |
o L4E - BS detection g LAE - BS detection

L4A - Classification
S2 time series D . I:I - L . |

e

(MBD1) [Stability & Consecutiveness Stability & Consecutiveness
= Marker e — > Marker
S2 time series ’ | .
.............................. > Vegetation growth marker Vegetation growth marker

(MDB L4A — OPT MAIN)

v

Input data preparation

Markers analysis

18 Hlﬁ

(P1 analy5|s Change P1 (P2 analysus Change P2
results results

Figure 1-1. General workflow of the L4F category change algorithm

| Permanent Crop

| Arable Land >

Files/data

Algorithm

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA
94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

(ﬁ esa Issue Page Date &g cap

1.0 10 31/03/2024 S

2. Input data preparation

2.1 Subsidy application layer

In order to ensure a certain level of consistency between the different Sen4dCAP processors, the
preparation of the subsidy application layer is performed prior to the execution of all processors. The
subsidy application layer preparation is described in a dedicated ATBD (RD.1). The outputs of the
subsidy application layer preparation used by the L4F category change detection processor are described
below. As parcels may change in size and/or shape from a year to the next, only parcel of similar shape
and size are retained for the change analysis. The script that allows this intersection is available in
appendices (see Algorithm 7-1). It is used to make an inventory of the study plots and to establish the
correspondence of the ‘NewlDs’ assigned by the system to the parcel from one year to the next.

2.1.1 Standardized subsidy application layer with quality flags

The standardized subsidy application layer with quality flags (Table 2-1):

e s stored as a PostGIS layer in the PostgreSQL database of the system,;
e is projected in national projection;

e has the following name: decl_{site} {year};

e has the same number of rows (parcels) than the original subsidy application layer.

Table 2-1. Standardized subsidy application layer with quality flags

Output data Description Default value [format]

decl_{site} {year} The standardized version of the subsidy | [GPKG] & [CSV]
application layer with the quality flags:
geometry and spectral information

It contains the attribute fields listed in Table 2-2 (fields in orange are already present in the original
subsidy application layer). Attributes coming from the Look-Up Table (LUT) shown in Table 2-3 are
also available in the layer at the parcel level. This layer is available as gpkg and csv files.

Table 2-2. Content of the standardized subsidy application layer with quality flags

Default value

Field name Role

[format]

Ori attributes All the original attributes of the original delaration dataset iltr:;cs:]er, float or
ori id Copy of the content of the attribute field defined by the user with | [string]

- the parcel id

. Copy of the content of the attribute field defined by the user with | [string]
ori_hold L

the holding id

ori cro Copy of the content of the attribute field defined by the user with | [input format: string

-crop the crop code or integer]
NewlID New sequential ID of the parcel [integer]
HoldID New sequential ID of the holdings [integer]

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

(ﬁ esa Issue Page Date A cap

1.0 1 31/03/2024 S
GeomValid Iden.tify. parcels for _which no POIygon exists in the subsidy | [integer, binary]
application layer or with a not valid geometry

Duplic Identify parcels that have the exact same geometry as another [integer, binary]
Area_meters Parcel area in the UTM projection (m?) [integer]
Overlap Identify parcels which overlaps with neighbouring parcels [integer, binary]
Shapelnd The crop type name [float]

S1pix Indicates the number of used S1 pixels in the parcel [integer]

S2pix Indicates the number of used S2 pixels in the parcel [integer]

2.1.2 Crop code LUT

If the original subsidy application layer contains a large number of crop types, it considerably improves
the classification accuracy to group together the crop types that are by definition very similar or that
have a very similar phenology. It is done in the crop code LUT, which makes this grouping and defines
new crop codes (CTnumL4A) and crop names (CTL4A).

In addition, to check the compliancy of the holdings regarding the crop diversification rules, a series of
information should be defined by crop type: the crop diversification class (CTnumDIV and CTDIV) and
whether or not it belongs to one or more of the categories Eligible Agricultural Area (EAA), Arable
Land (AL), Permanent grassland, Temporary grassland, Fallow land and Crop under water.

All this information is summarized in a csv file, the crop code LUT, which:

e s stored as a table in the PostgreSQL database of the system;
e isnamed lut {site} {year};
e contains the following information (Table 2-3).

These attributes are also stored at the parcel level in the standardized subsidy application
(decl {site} {year}).

Table 2-3. Content of the L4A crop code LUT

Field name Role Default value [format]
Ori_crop The initial crop code from the subsidy application layer [integer or string]
The new crop type code (each Ori_crop being associated | [integer]
CTnum .
to a unique CTnum)
CcT The name of the crop type in English [string]
The main land cover class of the crop type: [integer]
o 0:other natural areas
o 1:annual crop
LC o 2:permanent crop
o 3:grassland
o 4:fallow land
o 5:greenhouse and nursery
CThumL4A The new crop type .c.ode. resulting of the grouping of the | [integer]
CTnum for the classification

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0
(ﬁ esa Issue Page Date " cap
@7 y/ cmman agricitund policy
1.0 12 31/03/2024 - ‘
CTL4A The crop type name associated to CTnumL4A [string]
CTnumDIV The crop diversification class code [integer]
CTDIV The crop diversification class name [string]
EAA Eligble agricultural area: value 1 if the crop type belongs to | [integer, binary]
this category, value 0 otherwise
AL Arable Land: value 1 if the crop type belongs to this | [integer, binary]
category, value 0 otherwise
Permanent grassland: value 1 if the crop type belongs to | [integer, binary]
PGrass . .
this category, value 0 otherwise
Temporary grassland: value 1 if the crop type belongs to | [integer, binary]
TGrass . .
this category, value 0 otherwise
Fallow Fallow land: value 1 if the crop type belongs to this | [integer, binary]
category, value 0 otherwise
Crop under water: value 1 if the crop type belongs to this | [integer, binary]
Cwater .
category, value 0 otherwise

2.2 Optical data from MDB1

The MDBI1 contains basic single-date markers, which correspond to S1 and S2 signal statistics
aggregated at the parcel-level [RD.2]. Only the following S2 signal statistics are used for this use case:

1. MDBI

Blue B2: mean values by parcel;

Green B3: mean values by parcel;

NIR B8: mean values by parcel;

SWIR1 B11: mean values by parcel;

SWIR2 B12: mean values by parcel;

NDVI: mean values by parcel;

LAI: mean and standard deviation values by parcel;
FAPAR: mean values by parcel;

FCOVER: mean values by parcel.

NDVI, LAI, FAPAR and FCover statistics are calculated for each L3B product generated from S2 time
series by the Sen4CAP L3B processor.

Since the S2 single-dates bands values are extracted for each S2 tile, one parcel can have more than one
value for a single-date and for single-bands (overlapping area). In those cases, only the mean of those
values is kept.

These S2 signal statistics extracted will be used directly by the Category Change Detection processor or
by by the Bare soil processor, which is part of it (see section 3.1). The access to this dataset in done
using the API of the Sen4CAP system.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

(ﬁ esa Issue Page Date A cap

1.0 13 31/03/2024 Sm———.

2.3 Optical and SAR data from MDB L4A

The MDB L4A contains the markers specifically used by the L4A crop type processor. They are the
results of a 10-day temporal resampling in the case of S2 data and of a statistics calculation over different
periods in the case of S1 data. The MDB L4A is devided into four sub-MDB [RD.2]. Only the following
features are used in the category change detection processor and in the bare soil processor since it is part
of the workflow:

e Optical S2 signal statistics: every 10 days, based on 10-meters resolution data:
o NDVI: mean values by parcels.
e SAR SI signal statistics: every week (7 days), based on 20-meters resolution data:

Mean Amplitude Ascending VV: mean values by parcel;
Mean Amplitude Ascending VH: mean values by parcel;
Mean Amplitude Descending VV: mean values by parcel;
Mean Amplitude Descending VH: mean by parcel;

Mean Amplitude VV/VH ratio: mean by parcel;

Mean Coherence Ascending VV: mean by parcel;

Mean Coherence Ascending VH: mean values by parcel;
Mean Coherence Descending VV: mean values by parcel;
Mean Coherence Descending VH: mean values by parcel.

O 0O O O O O 0 Oo

o

These L4A S1 and S2 signal statistics extracted will be used directly by the Category Change Detection
processor or by by the Bare soil processor, which is part of it (see section 3.1).

The access to this dataset in done using the API of the Sen4CAP system.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

(ﬁ ecsa Issue Page Date

1.0 14 31/03/2024

F

cap

cammen agricutunal policy

\

3. Markers generation

The rationale behind this module is to generate markers during two successive periods that will help
detecting a change between agricultural category. The two successive periods, hereafter referred to as
P1 and P2, are defined by default as: from the 1% of September to the 31* of December (01-09/31-12)
for P1 and from the 1° of January to the 30™ of May (01-01/30-05) for P2. These two periods are set as
a default parameter. This can be adjusted in advanced parameters.

Fourkinds of markers are generated:

Vegetation growth

Bare soil markers (based on the LAE Bare Soil processor);
Vegetation stability and;

Outlier consecutiveness;

The way these markers are computed is described in the sub-sections below. The first step of the
markers’ generation consists in defining the site, the year and the IP address of the machine containing
all the needed dataset and loading the different libraries. The standardized subsidy application layer is
also imported.

The codes developed for this processor rely on a set of python libraries that need to be imported first
(Algorithm 3-1).

Algorithm 3-1. Importing necessary python libraries

from osgeo import ogr, osr
import psycopg2

import datetime

from datetime import date, datetime, time, timedelta
from time import strftime

from json import JSONDecodeError
import requests

import random

import pandas as pd

import numpy as np

from tqdm import tqdm

Algorithm 3-2. Defining key variables to access the machine and specific site

ip_sendcap = '000.11.222.33"'

site = 'bel_2021°*
year = '2021'
decl = pd.read_csv(file_path)

Once the key variables are set to access the machine and a specific site, a quick API verification is made
(see Algorithm 3-3 & Algorithm 3-4) by requesting all the markers in the MDB 4 — Opt main.

Algorithm 3-3. Defining needed keys and variables to access the Sen4CAP machine API

payload {"user": "sendcap", "password": "sendcap"}

resultl = requests.post(f'http://'+ip_sendcap+':8080/1login', data=payload).json()
api_token = resultl["data"]["sessionToken"]

headers = {"X-Auth-Token": api_token}

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

(ﬁ esa Issue Page Date &g cap

1.0 15 31/03/2024 S

Algorithm 3-4. Listing available S2 markers from MDB L4A

markers_all =
requests.get(f'http://'+ip_sendcap+':8080/markers/names?site="+site+'&productType=s4c_mdb
_l4a_opt_main&year='+year, headers=headers).json()["data"]

print(markers_all)

3.1 Bare soil markers

A first set of markers used to detect the change between land cover categories are the bare soil markers
generated by the L4E Bare Soil Processor. When launching the ‘Category change processor’, the bare
soil processor will be launched automatically for the specific periods of analysis P1 and P2 (described
above). Even if the user has already run the L4E Bare Soil Processor for his own monitoring, the
probablilty of having the bare soil markers matching perfectly with the two periods P1 and P2 is too
weak.

The complete description of the bare soil processor is described in [R.D.3]. The parameters used to in
the bare soil processor are described in Table 3-1.

Table 3-1. Parameters of the Bare Soil Processor to be run in the Category Change Detection Processor

Default value

Parameters

[format]
Period on which the calibration dataset is built 01/09 - 31/12 for P1
Calibration period & 01/01 -30/06 for
P2 [date]
Period on which bare soil/ non-bare soil analysis is 01/09 - 31/12 for P1
Monitoring period performed & 01/01 - 30/06 for
P2 [date]
Sentinel-2 minimun Minium number of S2 pixels in the parcel to allow a parcel .
. 50 [int]
pixels being used in the calibration dataset.

List of features to be tested to build the calibration dataset

- of “bare soil”. Only NDVI is mandatory. ‘NDVF’, 'NDWT’,
Bare soil features 'NDTI’, ’BSI’ [string]

. List of features to be tested to build the calibration dataset of | «\ DVI’, ’NDWY,
Non-bare soil “non-bare soil”. Only NDVI is mandatory. 'NDTI’, FCOVER,

features 'BSI [string]
NDVI < 0.15
NDWI <0

Treshold values for Features treshold values set to predict bare soil. NDTI< 0.1

bare soil features BSI >0.15
[Float]

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

c;esa Issue Page Date e h é ca

@77y’ cveman agrcdtund policy
1.0 16 31/03/2024 it
NDVI > 0.45
NDWI >0.3
Treshold values for Features treshold values set to predict non-bare soil NDTI >0.25
bare soil features FCOVER >0.45
BSI <0
[Float]
N estimators Number of trees in the random forest. 30 [int]

Stands for “Long Period”. It is used as the duration to look for | 60 [days]

P long vegetation after the end of the bare soil period.

Stands for “Short Period”. It corresponds to the maximum
number of days after the start of the bare soil period for
which the algorithm will look for other bare soil detection or
P short the end of the bare soil period. If no bare soil or non-bare soil | 30 [days]
occurred during that period, the End of the bare soil period is
set as the Sart of the period.

Threshold of “bare soil” (BS) that indicates the minimum 52:0.8
Treshold values BS confidence level in the BS prediction (coming from the RF | 51. .65

algorithm) to consider this detection as a strong.
[float]

Threshold of “non-bare soil” (NBS) that indicates the 52:0.8

Treshold values NBS minimum confidence level in the NBS prediction (coming | S1:0.7
from the RF algorithm) to consider this detection as a strong. [float]

Among all ‘Bare soil processor’ outputs, only ‘TTdaysS2’ is used as markers in this processor [R.D.3]:

e ‘TTdaysS2’ stands for the number of days of bare soil observed with Sentinel-2 (i.e. the sum of
all bare soil periods observed in the parcel);

This marker is contained in the csv file called: L4E_BS_ MarkersAll_{site} {Period_Mj}.csv. This
table has to be opened at the beginning of the process. Then, the marker is extracted at the same time as
the vegetation growth marker. The code is presented and described in the following sub section.

3.2 Vegetation growth marker

A second type of marker used to detect change between land cover category consists in the
characterization of the vegetation growth. This marker is built by computing the area under the NDVI
curve of each parcel during the two periods of analysis. It gives an idea of the growth dynamic of each
crop type which helps to distinguish them.

The function created to compute this marker is described in the Algorithm 3-5. This function
approximates the area under a curve defined by a list of values using a series of trapezoids. It calculates
the area of each trapezoid formed by adjacent values in the list and accumulates these areas to determine
the total approximate area under the curve. The function uses a combination of rectangles and triangles
to estimate the areas of these trapezoids.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

C‘, esa Issue Page Date g&‘ cap

1.0 17 31/03/2024 W SR

Algorithm 3-5. Function to compute the area under the curve

def area_curve(v_m):
total_area = 0
for j in range(len(v_m)-1):
area_rec = v_m[j]*10
area_j = area_rec + (v_m[j+1]-v_m[j]) * ©.5 * 10
total_area+=area_j
return total_area

Once the function has been defined, the following script can be used to extract both the vegetation
growth and the bare soil markers (Algorithm 3-6). The inputs and ouputs of the script are presented
below (Table 3-2).

Table 3-2. Inputs for the extraction of the vegetation growth and bare soil markers algorithm

Input names ‘ Role Default value [format]
Marker used to compute the area under the curve. ‘s2_mean_ndvi’
marker -
[string]
Refers to the marker database from which the marker ‘s4c_mdb_l4a_opt_main’
product_type . :
will be extracted. [string]
fromdate Curve The date that defines the beginning of the period of yyyy-10-15 for P1
- interest [string] (yyyy-mm-dd)
List of features to be tested to build the calibration ‘yyyy-11-30’
todate_Curve dataset of “bare soil”. Only NDVI is mandatory. [string] (yyyy-mm-dd)

Outputs
names

Default value [format]

Dataframe containing the the outputs of the algorithm.

The different columns are: .
e NewlD: [int]

o NewlD: the ID of the parcel; e S2pix: [int]
e S2pix: the number of S2 pixels in the parcel; e LC:[int]
e LC:the agricultural class e Pgrass: [int]
veg_all e Pgrass: indicates wether the parcel is a e CTnum: [int]
permanent grassland; o CTL4A: [str]
e CTnum: the crop type number of the parcel e TTdaysS2: [int]
e CTL4A: crop type of the parcel e AreaVeg: [int]

e TTdays: number of days with bare soil (Sentinel 2)
e AreaVeg: area under the cuve

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

c; esa Issue Page Date Kt cap

1.0 18 31/03/2024 S

Algorithm 3-6. Vegetation growth and Bare soil markers extraction

decl_csv.set_index('NewID', inplace=True)

val_all = pd.DataFrame()
marker = 's2 mean_ndvi'
veg_all = []

product_type = 's4c_mdb_l4a_opt_main'

Setting the specific period to compute the vegetation growth marker
fromdate_Curve = '2021-10-15'
todate_Curve = '2021-11-30'

url =
f"http://{ip_sendcap}:8080/markers?site={site}&productType={product_typel}&year={year}&mar
kers={marker}&from={fromdate_Curve}&to={todate_Curve}"

print(url)

re = requests.get(url, headers=headers)
#print(re.json())

result = re.json()["data"]

parcels = result['parcels']

tt = len(parcels)

for p in tqdm(range(1,tt,2000)):

re_p = parcels[p:p+2000]

vall alll = pd.DataFrame()

for i in re_p:
newid = i['id']
#print(i['id'])
val_i = pd.DataFrame()
val_i['dates'] = result["dates"]
val_i[marker] = i['markers'][marker]

tt_bs = bs_markers.loc[bs_markers['NewID']==newid]
#print(tt_bs)
if len(tt_bs) == 0:
bs_count = np.nan
count_P1 = np.nan
else :
bs_count = tt_bs['TTdaysS2'].iloc[:].squeeze()
count_P1 = tt_bs['NbrTTS2'].iloc[:].squeeze()
curve_i = area_curve(val_i[marker])

if newid in decl.index:
veg_all.append({
'NewID' : newid,
'S2Pix"' : decl.S2Pix[newid],
'"LC" : decl.lc[newid],
'"PGrass' : decl.pgrass[newid],
"CTnum' : decl.ctnum[newid],
'"CTLAA' : decl.ctlda[newid],
'TTdaysS2': bs_count,
'AreaVeg' : curve_i

1)
veg_all = pd.DataFrame(veg_all)

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to C)@@
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

c; eésa Issue Page Date e::‘“ cap

1.0 19 31/03/2024 7/

7/ commen agricuitenal policy

First, an empty pandas DataFrame named ‘val all’ is initialized, which will be used to store data later.
The marker to be extracted via Sen4dCAP API is set as 's2_mean_ndvi'. An empty list named ‘veg_all’
is created. This list is intended to accumulate processed data for further analysis. The variable
‘product_type® is defined as 's4c_mdb 14a opt main'. Two date variables, ‘fromdate Curve' and
‘todate Curve’, are set to "'2021-10-15" and "'2021-11-30" respectively. These dates define the time
period for the computation of the vegetation growth marker. This period has been set after a sensititvity
analysis. It appeared that this period was the more appropriate to underline differences between
agricultural categories. A URL is constructed using various variables such as ‘ip sendcap’, 'site’,
‘product type’, ‘year', ‘marker’, ‘fromdate Curve’, and "todate Curve'. This URL is designed to fetch
data related to specific markers from the Sen4CAP platform.

An HTTP GET request is made to the constructed URL using the ‘requests” library, and the response is
stored in the variable 're’. The JSON response is parsed, and the ""data"" field is extracted into the
variable ‘result’. This data contains marker-related information. From the ‘result” data, the list of parcels
is extracted and stored in the variable “parcels’. The length of the "parcels” list is calculated and stored
in the variable tt'. A loop is initiated to iterate through a range of indices. Within this loop:

- The “parcels’ list is sliced into chunks of 2000 elements based on the current index 'p’,
and this sliced data is stored in the variable ‘re_p'.
- An empty pandas DataFrame named "vall_alll" is initialized.
- Another loop iterates through each parcel in the "re_p° list. Within this loop:
1. The "id" field of the current parcel is extracted and stored in the variable
‘newid".
2. Additional data related to the current parcel is retrieved from a DataFrame
named "bs_markers’.
3. An area value is calculated using the "area curve' function for the specific
marker value.
4. It's checked whether ‘newid" exists in the ‘decl csv' DataFrame index. If it
does, a dictionary containing relevant data is appended to the ‘veg_all’ list.

Finally, the accumulated data in the 'veg_all’ list is converted into a pandas DataFrame named "veg_all".

3.3 Vegetation stability and outlier consecutiveness

The third type of marker aims at assess the physiological behavior of a parcel by comparing it to its
previous crop type belonging. To do so, two markers have been developed. The first one assesses the
LAI behavior of the parcel during the period of monitoring by comparing its mean value to the mean
LAI value of its previous crop type. If the crop type of the parcel has changed from the previous season
(i.e., temporary grassland to winter wheat) its mean LAI value will diverge from the reference mean at
a certain point. The second marker assesses the consecutiveness of the out-of-range observed values.

The two markers (stability and consecutiveness) are based on the mean and the standard deviation LAI
of each main cultural class during the periods of analysis P1 and P2. The first step in the elaboration of
these two markers consists in building a reference dataframe containing the mean and the standard
deviation for each cultural class per acquisition. This dataframe will then be used to compare the LAI
value of each parcel to its reference mean and standard deviation. Table 3-3 describes the function’s
inputs and output and Algorithm 3-7 presents the function itself.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

C‘, esa Issue Page Date g: cap

10 20 31/03/2024 SRR

Table 3-3. Inputs and outputs of the LAI reference dataframe construction function

Input names Role ‘ Default value [format]
Marker used for both vegetation stability and outlier ‘mean LAl
marker consecutiveness markers computation [string]

Refers to the marker database from which the marker

will be extracted s4c_mdb1” [string]

product_type

The date that defines the beginning of the period of ‘yyyy-09-01’ for P1
fromdate . ;
interest [string] (yyyy-mm-dd)
List of features to be tested to build the calibration ‘yyyy-12-31’
todate dataset of “bare soil”. Only NDVI is mandatory. [string] (yyyy-mm-dd)

Outputs names Default value [format]

Dataframe containing LAl values for each acquisition

date and for each parcel. The different columns are: * NewlD: int]

e Date: [date]
val_all e NewlID: the ID of the parcel; e Marker: [int]
e Date: acquisition date;

e Marker: marker’s value;

Algorithm 3-7. Mean LAI reference dataframe construction

val_all = pd.DataFrame()
marker = 'mean_LAI'

product_type = 's4c_mdbl’

fromdate = '2021-'+'09'+'-01"
todate = '2021-'+'12"+"'-31"

url =
f"http://{ip_sendcap}:8080/markers?site={site}&productType={product_typel}&year={year}&mar
kers={marker}&from={fromdate}&to={todate}"

print(url)

re = requests.get(url, headers=headers)
result = re.json()["data"]

parcels = result['parcels']

tt = len(parcels)

for p in tqdm(range(0,tt,2000)):

re_p = parcels[p:p+2000]

vall alll = pd.DataFrame()

for i in re_p:
newid = i['id']
val_i = pd.DataFrame()
val_i['dates'] = result["dates"]
val_i[marker] = i["'markers'][marker]
val_i['NewID'] = i['id']
vall alll = pd.concat([vall_alll,val i])

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to C)@@
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

c;esa Issue Page Date e h é ca

1.0 21 31/03/2024 S~

val_all = pd.concat([val_all,vall_alll])

The script above is used to generate a first dataframe, containing the mean LAI per parcel and for each
S2 acquisition. It could be separated in several setps:

An empty pandas DataFrame named “val_all’ is created, which will be used to store collected data. The
variable ‘marker’ is assigned the value 'mean LAI" since it is the metric on which the two markers are
based on. The variable ‘product type’ is set to 's4éc_mdb1", indicating the marker database from which
the mean L AI will be retrieved from. Two date variables, "fromdate’ and “todate’, are defined with
specific date values. These variables specify the time period for which data will be retrieved.

A URL is constructed using various variables either created at the beginning of the script ("ip_sen4cap’,
‘site’, ‘year’) or specifically related to markers ("product_type’, ‘marker’, “fromdate’, and ‘todate’). This
URL is designed to fetch data related to a specific marker type within the given time frame. An HTTP
GET request is made to the constructed URL using the ‘requests’ library, and the response is stored in
the variable ‘re’. The JSON response is parsed, and the ""data™ field is extracted into the variable
‘result’. This data contains information related to the marker type and associated values. From the
‘result” data, the list of parcels is extracted and stored in the variable ‘parcels’. Then, the length of the
‘parcels’ list is calculated and stored in the variable “tt'. A loop is initiated to iterate through a range of
indices, starting from O up to the length of “parcels’, with a step size of 2000. Inside the loop:

e The “parcels’ list is sliced into chunks of 2000 elements based on the current index "p°, and this
sliced data is stored in the variable ‘'re p’;
e An empty pandas DataFrame named “vall alll’ is initialized to collect data within the current
iteration;
e Another loop iterates through each parcel in the ‘re_p’ list:
- The "id" of the current parcel is extracted and stored in the variable ‘newid’;
- A pandas DataFrame named ‘val i’ is created. This DataFrame includes date values
and the specific marker value associated with the current parcel;
- The "id" of the current parcel is added as a new column in the “val i’ DataFrame;
- The "val i" DataFrame is concatenated with the existing "vall_alll® DataFrame.

After the loop, the “vall alll® DataFrame is concatenated with the “val all’ DataFrame to accumulate
all the processed data.

Subsequently, a dictionnay of dataframes is created (Algorithm 3-8).

Overall, this code processes data by grouping and aggregating it based on the 'ctnuml4a’ and 'dates'
columns, calculating mean and standard deviation values, and then organizing this information into a
dictionary where each 'ctnuml4a’ value corresponds to a DataFrame containing 'dates', 'mean’, and 'std'
columns.

Algorithm 3-8. Reference dataframes dictionnary creation

dict_ref
ctnuml4a

{1}

decl_csv.ctnuml4a.unique()

for ct in ctnuml4a:

val plot = val all2il.loc[val_all2l['ctnumld4a']==ct]

val dates_ct = val_plot.groupby(['dates'],as_index=False)[marker].mean()

val _dates_ct['std'] =
val_plot.groupby(['dates'],as_index=False)[marker].std()[marker]

df_ref = val_dates_ct.loc[:,('dates',marker, 'std"')]

df_ref = df_ref.rename(columns={marker:'mean', 'std':"'std'})

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to @
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

(ﬁ esa Issue Page Date Kt cap

1.0 22 31/03/2024 S

dict_ref[ct] = df_ref

On the other hand, a function is created to compare the values of each parcel to the reference dataframe.
The function below (Algorithm 3-9) has been designed to make this comparison and to analyze the
number of outlier (number, consecutiveness, ratio, etc.).

Algorithm 3-9. LAI outliers consecutivensess function

def count_lai_outliers(df, df_ref, nb_stdev):

df['ref_LAI - stdev']
df['ref_LAI + stdev']

df_ref['mean'] - nb_stdev * df_ref['std']
df_ref['mean'] + nb_stdev * df_ref['std']

Create a new DataFrame to store the counts

counts_df = pd.DataFrame(columns=["count","consec_count"”, "total_non_nan"])

Loop over each parcel in the DataFrame
Get the LAI values for the current parcel
parcel_lai = df
#print(parcel_lai)
Calculate the reference range for each date
ref_lai_min = df['ref_LAI - stdev']
ref_lai_max = df['ref_LAI + stdev']
#tprint(ref_lai_max)
Calculate the counts for the current parcel
count = 0
consec_count = 0
prev_out_of_range = False
total _non_nan = 0
for i in range(len(parcel_lai)):
#print('i:"',1)
if pd.isna(parcel_lai['mean'][i]):
continue
elif (parcel_lai['mean'][i] < ref_lai_min[i]) or (parcel_lai['mean'][i] >
ref_lai max[i]):
count += 1
if prev_out_of_range:
consec_count += 1
else:
prev_out_of_range = True
else:
prev_out_of_range = False

total_non_nan = parcel_lai['mean'].count()
Append the counts to the counts DataFrame
parcel counts_df = pd.DataFrame({ "count": [count],
"consec_count": [consec_count],
"total_non_nan": [total_non_nan],})
counts_df = pd.concat([counts_df, parcel_counts_df], ignore_index=True)
id_not_nan = counts_df['total_non_nan'] != 0
counts_df = counts_df[id_not_nan]

counts_df['ratio_obs'] = (counts_df['count']/counts_df['total_non_nan'])*100

return counts_df

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

(ﬁ esa Issue Page Date &g cap

1.0 23 31/03/2024 S

The function above can be described several steps:

Calculate Reference Range: The function receives three parameters: "df* (the input DataFrame of LAI
values), "df ref" (a reference DataFrame containing mean and standard deviation values), and
‘nb_stdev' (the number of standard deviations to consider for the reference range). The function
calculates the upper and lower bounds of the reference range by adding and subtracting 'nb_stdev' times
the standard deviation from the mean. Initialize Counts DataFrame: A new DataFrame named
‘counts_df" is created with columns "count," "consec count," and "total non nan." This DataFrame
will store the calculated counts and ratios for each parcel. Then the function loops over each row (parcel)
in the input DataFrame "df". For each parcel:

- The LAI values for the current parcel are assigned to “parcel lai'.
- The reference range bounds for each date are assigned to ‘ref lai min® and ‘ref lai max’.
- The loop iterates over each LAI value in the parcel's data:

- If the value is NaN, it's skipped.

- If the value is outside the reference range, the "count’ is incremented, and if the previous value was
also out of range, ‘consec count’ is incremented. The ‘prev_out of range’ flag keeps track of
consecutive out-of-range values.

- If the value is within the reference range, ‘prev_out of range’ is reset to "False".
- "total_non_nan’ is calculated as the total count of non-NaN LAI values in the parcel.

A new dataframe ‘parcel counts_df’ is then created top store the counts and ratios for the current parcel.
It includes the calculated ‘count’, ‘consec_count’, and ‘total non nan' values. Secondly, the
‘parcel_counts_df" is concatenated with the main "counts df" using “pd.concat’, effectively adding the
counts and ratios for the current parcel to the overall counts DataFrame. A filtering step removes the
rows in "counts_df" where the "total non_nan’ count is zero. Finally, the function calculates the ratio of
outliers for each parcel by dividing the ‘count’ by the “total non nan’ and multiplying by 100. This
ratio is stored in a new column named ‘ratio_obs" in ‘counts_df".

Overall, this function is used to analyze LAI data, identify outliers based on a reference range, and
calculate the counts and ratios of outliers for each parcel in the dataset. Once this function is created, it
is applied (see Algorithm 3-10). The input and output of the script are described in Table 3-4.

Table 3-4. Inputs and Outputs of the vegetation stability and outlier consecutiveness functions

Input names Role Default value [format]
Marker used to compute the area under the curve. ‘mean_LAI
marker [string]

Refers to the marker database from which the marker

will be extracted. s4c_mdb1” [string]

product_type

fromdate_Stability The date that defines the beginning of the period of yyyfy-09-01 for P1
- interest [string] (yyyy-mm-dd)
List of features to be tested to build the calibration ‘yyyy-12-31’

Todate_Stability dataset of “bare soil”. Only NDVI is mandatory. [string] (yyyy-mm-dd)

Outputs names Default value [format]

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

(“. esa Issue Page Date &:L.; cap

1.0 24 31/03/2024 S

Dataframe containing the previous outputs from the

vegetation growth and bare soil markers (see table 3-2) * Ratio_stability

and the outputs of the algorithm. The new added [int] .
veg_all . e Consec_stability
g_ columns are: (in]
in

e Ratio_stability;
e Consec_stability;

Algorithm 3-10. Vegetation stability and consecutiveness markers computation

fromdate_Stability = '2021-09-01°'
todate_Stability = '2021-12-31'
marker = 'mean_LAI'

#list m = ',"'.join(markers_opt_main)
product_type = 's4c_mdbl'

url =
f"http://{ip_sendcap}:8080/markers?site={site}&productType={product_type}&year={year}&mar
kers={marker}&from={fromdate_Stability}&to={todate_Stability}"

print(url)

re = requests.get(url, headers=headers)
#print(re.json())

result = re.json()["data"]

parcels = result['parcels']

tt = len(parcels)

for p in tqdm(range(0,tt,2000)):
re_p = parcels[p:p+2000]
for i in re_p:
newid = i['id']
if newid in decl_csv.index: ## As mentionned in the file Sen4CAP error, a
mismatch can happen between the produced declaration and the declaration stored in the
sql system
#print(i['id'])
val_i = pd.DataFrame()
val i['dates'] = result["dates"]
val_i[marker] = i['markers'][marker]
val_i = val_i.rename(columns={marker: 'mean'})
stab = count_lai_outliers(val_i,dict_ref[decl_csv.ctnuml4a[newid]],1.5)
#print(stab)
if len(stab) !=0:
veg_all.loc[veg_all.NewID==newid, 'Ratio_stability'] =
stab['ratio_obs'][9]

veg_all.loc[veg_all.NewID==newid, 'Consec_stability'] =
stab['consec_count'][0]

As for the other scripts, variables related to the period of analysis, to the needed marker and the
Send4CAP database it comes from are set at the beginning. The URL is then built as well as the
connection to the plateform with the APL. Then the script proceeds to iterate through the parcels in
segments of 2000 parcels, displaying progress using the ‘tqdm" function. Within each iteration:

- A batch of parcel data is extracted and stored as 're p'.

- For each individual parcel ('i’) in the current batch:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to @
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

(ﬁ ecsa Issue Page Date

1.0 25 31/03/2024

F

cap

cammen agricutunal policy

\

- The parcel's unique identifier, accessed through the 'id' key, is saved as ‘newid".

- A check is performed to verify whether ‘newid" is present within the index of the “decl csv’
DataFrame.

- If the check passes:
- An empty DataFrame called “val i’ is created.
- The 'dates' and specific ‘marker’ values are extracted from the result data and inserted into ‘val i".
- The column name of “marker” in "val i is renamed to 'mean’.

- The "count lai_outliers’ function is invoked, taking “val i' as input, along with the corresponding
reference DataFrame from “dict ref” and a threshold value of 1.5.

- If there are outcomes from the ‘count lai_outliers’ function:

- The 'ratio_obs' and 'consec_count' values from the results are assigned to their respective columns
in the 'veg_all’ DataFrame using the "loc’ method.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

(ﬁ esa Issue Page Date &g cap

1.0 26 31/03/2024 S

4. Markers analysis

Once the markers have been computed, an analysis is performed for the two periods independently. The
idea behind this separation comes from the fact that according the type of change, its occurrence might
take place during the first period (i.e., from September to December) or during the second period (from
January to June). Even if results of both P1 and P2 are used to provide the user with a prediction of
change, keeping the information from both periods independently allows to keep a temporal insight.

For each of the two periods P1 and P2, a change score is given to each parcel. This score is calculated
on the basis of the values of the various markers presented above. Logically, the higher the score, the
higher the probability of an agricultural category change. More concretely, for each period, a trehsold is
set on the change score. When the value exceeds the threshold, a change of agricultural category is
predicted. The confidence of the prediction is intrinsically linked to the change score. If the change score
is equal to the threshold, the prediction could be considered as medium-high. If the change score equals
the highest reachable score, the prediction could be considered as strong. In between values are
considered are associated with good confidence level. We strongly recommend to code this part as
a Jupyther notebook. The scripts provided are given as an exemple and value should be tuned by the
user. If for the same site, data from a previous year are available, an optimization could be performed
first. A script is provided at the end of the section.

4.1 Change score computation

The script below (Algorithm 4-1) assigns a new column (‘ChangeP1’ or ‘ChangeP2’) to the dataframe
‘veg_all’ that contains for each parcel, the value of all computed markers. Default tresholds values for
each agricultural category and each period are provided in Table 4-1 and Table 4-2 . These values should
be adatpted according to the specificities of the region of interest.

Table 4-1. Change score computation : Tresholds values P1

Change score

Marker Tresholds
value

TTdaysS2 TTdaysS2 >0
. - 0 < Ratio_stability < 50 +1
R I =
Grasslang atio_stability Ratio_stability > 50 +1.5
Consec_stability Consec_stability >0 +1
TTdaysS2 TTdaysS2 >0 +3
Permanen
el AreaVeg AreaVeg> 50 +1
crop
Ratio_stability Ratio_stability > 20 +1
TTdaysS2 TTdaysS2 >0 +1
Annual crop
AreaVeg AreaVeg > 50 +1,5

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

@ esa Issue Page Date Kt cap

-y Commen agrcutural patcy
1.0 27 31/03/2024 7’ o—_—

Table 4-2. Change score computation : Tresholds values P2

Change score
value

Marker Tresholds

TTdaysS2 TTdaysS2 >0
. - 0 < Ratio_stability < 25 +1
Grassland Ratio_stability Ratio_ stability > 25 5
Consec_stability Consec_stability > 1 +1
TTdayss2 TTdaysS2 >0 +3
Permanent
ermane AreaVeg AreaVeg> 25 +1
crop
Ratio_stability Ratio_stability > 20 +1
TTdaysS2 TTdaysS2 >0 +1
Annual crop 0 < AreaVeg < 50 +0,5
AreaVeg AreaVeg > 50 +1.5

Algorithm 4-1. Application of treshold values

P1

#1. Grassland changes

df['ChangeP1'] = np.nan

df.loc[(df['LC_20']==3), 'ChangeP1'] = ©

df.loc[(df['LC_20']==3) & (df['TTdaysS2']>0), 'ChangeP1'] += 2
df.loc[(df['LC_20']==3) & (df['Ratio_stability']>0) & (df['Ratio_stability']<50),
"ChangePl1'] += 1
df.loc[(df['LC_20'
df.loc[(df['LC_20'

1==3) & (df['Ratio_stability']>50), 'ChangePl'] += 1.5
1==3) & (df['ConsecC_stability']>= @) ,'ChangeP1'] += 1
#2. Permanent Crop changes

df.loc[(df['LC_20']==2), 'ChangeP1'] = ©

df.loc[(df['LC_20']==2) & (df['TTdaysS2']>0), 'ChangeP1'] += 3
df.loc[(df['LC_20']==2) & (df['AreaVeg']>50), 'ChangePl'] +=1
df.loc[(df['LC_20']==2) & (df['Ratio_stability']>20), 'ChangePl'] += 1

#3. Arable land changes

df.loc[(df['LC_20"']==1), 'ChangePl1l'] = ©

df.loc[(df['LC_20"']==1) & (df['TTdaysS2'] == @), 'ChangeP1'] += 1
df.loc[(df['LC_20"']==1) & (df['AreaVeg']»50), 'ChangePl'] += 1.5

P2

#1. Grassland changes

df['ChangeP2'] = np.nan

df.loc[(df['LC_20']==3), 'ChangeP2'] = ©

df.loc[(df['LC_20"']==3) & (df['TTdaysS2_P2']>0), 'ChangeP2'] += 2
df.loc[(df['LC_20"']==3) & (df['Ratio_stability P2']>0) &
(df['Ratio stability P2']<25), 'ChangeP2'] += 1

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to C)@@
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

(ﬁ ecsa Issue Page Date ;

1.0 28 31/03/2024

ca

cammen agricutunal policy

\

df.loc[(df['LC_20']
df.loc[(df['LC_20']

==3) & (df['Ratio_stability P2']>25), 'ChangeP2'] += 1.5
==3) & (df['ConsecC_stability P2']>= 1) ,'ChangeP2'] += 1
#2. Permanent Crop changes

df.loc[(df['LC_20"']==2), 'ChangePl'] = 0

df.loc[(df['LC_20"']==2) & (df['TTdaysS2_P2']>0), 'ChangeP2'] += 3
df.loc[(df['LC_20']==2) & (df['AreaVeg_P2']>25), 'ChangeP2'] += 1
df.loc[(df['LC_20']==2) & (df['Ratio_stability P2']>20), 'ChangeP2'] += 1

#3. Arable land changes

df.loc[(df['LC_20']==1), 'ChangeP2'] = ©

df.loc[(df['LC_20']==1) & (df['TTdaysS2_P2'] == @), 'ChangeP2'] += 1
df.loc[(df['LC_20']==1) & (df['AreaVeg P2']> 0) & (df['AreaVeg_P2']«<590),
'ChangeP2'] += 0.5

df.loc[(df['LC_20']==1) & (df['AreaVeg_P2']>50), 'ChangePl'] += 1.5

After having given a change score to each parcel, a prediction is made based on certain threshold. Again,
this threshold should be adapted to fit the region of interet specificities. Two columns are added to the
dataframe containing 1 or 0 if a prediction of change is made or not (Algorithm 4-2). Enventually a last
column is added and contain the sum of ‘pred changeP1’ and ‘pred changeP2’.

Algorithm 4-2. Change prediction

veg_all ['pred_changeP1l'] = ©
veg_all.loc[(df['ChangePl1'] >= 2.5), 'pred_changeP1'] +=1

veg_all ['pred_changeP2'] 0
veg_all.loc[(df['ChangeP2'] >= 3), 'pred_changeP2'] +=1

veg_all ['pred_change P1 P2'] = df['pred_changeP1'] + df['pred_changeP2']

4.2 Tresholds optimization

Algorithm 4-3 has been designed to optimize the detection of specific changes. As mentioned, this
optimization phase is only possible if results from a previous year are available.

The optimization method consists in trying all markers combinations’ tresholds to find the combination
that maximizes true change dections while minimizing false change detection. In this case, the script
has been tunned to maximize the detection of change from grasslands to winter crops. Two subsets are
defined: one for grasslands that become winter crops and another for grasses that stay grasses. The script
evaluates the model's performance on each subset separately. After having defined a percentage of
tolerated false positives, a performance metric is defined. This metric consists in a ratio between false
negative for the winter crops (changes that occurred but are not detected) and true negative of grasses
(grasses that are predicted to stay grasses). The best combination of parameters is the one that minimized
the performance metric. Once it has been found, it is applied to the whole dataset.

Algorithm 4-3. Optimization algorithm

import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)

from sklearn.metrics import accuracy_score, recall score

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to @
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

(ﬁ esa Issue Page Date Kt cap

1.0 29 31/03/2024 S

Define the threshold ranges to try

threshold_ranges = {
'TTdayss2': [@, 1, 2, 3, 4, 5],
'Ratio_stability min': [@, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50],
'Ratio_stability max': [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50],
'ConsecC_stability': [0, 1]

}

Define a list of threshold combinations to try
threshold_combinations = []
for tt in threshold_ranges['TTdaysS2']:
for rsmin in threshold_ranges['Ratio_stability min']:
for rsmax in threshold_ranges['Ratio_stability max']:
for cs in threshold_ranges['ConsecC_stability']:
threshold_combinations.append((tt, rsmin, rsmax, cs))

Evaluate each combination and save the performance metrics
performance = []
for combination in threshold_combinations:
tt_threshold, rsmin_threshold, rsmax_threshold, cs_threshold = combination

Apply the thresholds to the dataframe

df['ChangeP1'] = np.nan

df.loc[df['LC_20"'] == 3, 'ChangeP1'] = 0

df.loc[(df['LC_20'] == 3) & (df['TTdaysS2'] > tt_threshold), 'ChangeP1'] += 1.5

df.loc[(df['LC_20'] == 3) & (df['Ratio_stability'] > rsmin_threshold) &
(df['Ratio_stability'] < rsmax_threshold), 'ChangePl'] += 1

df.loc[(df['LC_20'] == 3) & (df['Ratio_stability'] > rsmax_threshold), 'ChangePl'] +=
1.5

df.loc[(df['LC_20'] == 3) & (df['ConsecC_stability'] >= cs_threshold), 'ChangePl'] +=
1

df['pred_changeP1'] = 0
df.loc[df['ChangePl1'] >= 2.5, 'pred_changePl'] += 1

Select the subset for which we want to optimize the detection (in this case, winter
crops: Winter Cereal and Spelt)

subset = df.loc[(df['LC_20'] == 3) & (df['LC_21"'] == 1) & ((df['CTL4A_21'] == 'Winter
Cereal') | (df['CTL4A_21'] == 'Spelt'))]

Evaluate the performance of the model on the subset (winter crops & spelt)
true_change = subset['true_change']
predicted_change = subset['pred_changePl']

tp = sum((predicted_change == 1) & (true_change == 1))
tn = sum((predicted_change == 0) & (true_change == 0))
fn = sum((predicted_change == 0) & (true_change == 1))

recall = recall_score(true_change, predicted_change)

Evaluate the performance of the model on the subset (grasses to grasses)
subset_g = df.loc[(df['LC_20'] == 3) & (df['LC_21'] == 3)]

true_change = subset_g['true_change']

predicted_change = subset_g['pred_changePl']

tp_g = sum((predicted_change == 1) & (true_change == 1))
tn_g = sum((predicted_change == 0) & (true_change == 0))
fp_g = sum((predicted_change == 1) & (true_change == 0))

recall g = recall_score(true_change, predicted_change)

Calculate the performance metric that reflects the desired optimization goal
if len(subset_g) > © and (fp_g / len(subset _g)) <= 0.05:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

c; esa Issue Page Date Kt cap

1.0 30 31/03/2024 S

performance_metric = fn / tn_g
performance.append((tt_threshold, rsmin_threshold, rsmax_threshold, cs_threshold,
recall, performance_metric))

Find the best performing combination of thresholds based on the performance metric
best_performance = min(performance, key=lambda x: x[-1])

best_thresholds = best_performance[:4]

best_performance_metric = best_performance[-1]

Get the best threshold values
tt_threshold, rsmin_threshold, rsmax_threshold, cs_threshold = best_thresholds

Apply the best thresholds to the dataframe

df['ChangeP1'] = np.nan

df.loc[df['LC_20'] == 3, 'ChangePl'] = 0

df.loc[(df['LC_20"'] == 3) & (df['TTdaysS2'] > tt_threshold), 'ChangePl1'] += 1.5
df.loc[(df['LC_20"'] == 3) & (df['Ratio_stability'] > rsmin_threshold) &
(df['Ratio_stability'] < rsmax_threshold), 'ChangePl'] += 1

df.loc[(df['LC_20'] == 3) & (df['Ratio_stability'] > rsmax_threshold), 'ChangePl1'] += 1.5
df.loc[(df['LC_20'] == 3) & (df['ConsecC_stability'] >= cs_threshold), 'ChangePl'] += 1

df['pred_changeP1'] = 0
df.loc[df['ChangePl1'] >= 2.5, 'pred_changePl'] += 1

Select the subset for which we want to optimize the detection (in this case, winter
crops: Winter Cereal and Spelt)

subset = df.loc[(df['LC_20'] == 3) & (df['LC_21'] == 1) & ((df['CTL4A_21'] == 'Winter
Cereal') | (df['CTL4A_21'] == 'Spelt'))]

Evaluate the performance of the model on the subset (winter crops & spelt)
true_change = subset['true_change']
predicted_change = subset['pred_changePl']

tp = sum((predicted_change == 1) & (true_change ==
tn = sum((predicted_change == 0) & (true_change ==
fn = sum((predicted_change == 0) & (true_change ==

1))
0))
1))

Evaluate the performance of the model on the subset (grasses to grasses)
subset_g = df.loc[(df['LC_20'] == 3) & (df['LC_21'] == 3)]

true_change = subset_g['true_change']

predicted_change = subset_g['pred_changePl']

tp_g = sum((predicted_change == 1) & (true_change == 1))
tn_g = sum((predicted_change == 0) & (true_change == 0))
fp_g = sum((predicted_change == 1) & (true_change == 0))

print("Best performance: Metric = {:.4f}, Recall =
{:.4f}".format(best_performance_metric, best_performance[-2]))

print("Best thresholds: tt_threshold = {}, rsmin_threshold = {}, rsmax_threshold = {},
cs_threshold = {}".format(tt_threshold, rsmin_threshold, rsmax_threshold, cs_threshold))

print("Best performance: tp = {}, tn = {}, fn = {}, tp_g = {}, tn_g = {}, fp_g =
{}".format(tp, tn, fn, tp_g, tn_g, fp_g))

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

C; eésa Issue Page Date g:‘d cap

7y’ commen agricutuna patcy

1.0 31 31/03/2024 7

5. Results consolidation with L4A processor results

This last step consists in using the crop type prediction map to confirm or invalidate predictions made
with the different markers. Based on the crop type prediction and its confidence level, the change score
will be increased or decreased. At this point, it is important to note that this consolidation phase could
only take place if the crop type algorithm have been excecuted (i.e., at the end of P2). To be performed,
a declaration and a look-up table for the current year (year of P2) should be imported in the system. This
will be first set as an option to allow the user to run the L4F processor without the use of the L4A
processor. As for the change score computation, we strongly recommend to code this last part in a
Jyputer noterbook and to adapt the tresholds and values that are given as an exemple here below.

As for the bare soil processor, the L4A crop type processor will be launched automatically when
launching the L4F category change processor. This processor uses Sentinel-1 and Sentinel-2 data to
extract timely resampled markers at the parcel level. These markers are then used by a Random Forest
classification algorithm to predict a crop type map. A detailed explaination of the algorithm operation
could be found in the L4A ATBD [RD.3]. Parameters (default) used to run the L4A processor are
described in the same document. The period used to predict the crop type extends from January to June
(i.e., P2). The way the change score is modified accordin the L4A processor results is described below.
The example focuses on P1 but the same methodology is applied for P2 accordingly.

Algorithm 5-1. Consolition of change prediction with L4A results

df is equal to previous veg all

df['ChangeP1 _CT'] = df['ChangePl']
df.loc[(df['Pred_conf_1'] >= 0.85) & (df['ChangePred_CT'

1 2
df.loc[(df['Pred_conf_1'] >= 0.85) & (df['ChangePred_CT']

2

= 1) , '"ChangePl1 _CT'] +
= @) , 'ChangeP1 CT'] -

df.loc[(df['Pred_conf_1'] > 0.2) & (df['Pred_conf_1'] < 0.85) & (df['ChangePred_CT'] ==
1) , 'ChangePl CT'] += 1

df.loc[(df['Pred_conf_1'] > 0.2) & (df['Pred_conf_1'] < 0.85) & (df['ChangePred CT'] ==
9) , 'ChangePl CT'] -=1

After having applied an increase or a decrease in the change score, a prediction is made based on certain
threshold. This threshold is given as an example and should be adapted. Two columns new are added to
the dataframe containing 1 or 0 if a prediction of change is made or not.

Algorithm 5-2. Consolidated change prediction

df['pred_changePl1 CT'] = 0
df.loc[(df['ChangeP1_CT'] >= 2.5), 'pred_changePl CT'] += 1

df['pred_changeP2 CT'] = 0
df.loc[(df['ChangeP2_CT'] >= 3), 'pred_changeP2 CT'] += 1

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to @
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

@cesa

Ref

Sen4CAP_DDF-ATBD-ChangeCat v1.0

Issue

Page Date

1.0

32 31/03/2024

cap

7/ commn srcutun potcy

6. Output and interpretation

Column name

Table 6-1. Csv Output content

Description

The ouput of the L4F category consists in a CSV file, L4F ACC_Markers_Pred_{site name}.csv,
gathering together all the markers for the two periods, the results of the crop type algorithm, the change
score with and without the use of the crop ype change detection and the final prediction with and without
the use of the crop type change detection. The columns of the file are described in Table 6-1. YO0 indicates
the year of P1 and Y1 indicates the year of P2. To make it easier to read the results, an interpretation
grid is also provided (see Figure 6-1).

Value
format

NewlID_YO Parcel ID generated by the system (year 0) [integer]
NewlID_Y1! Parcel ID generated by the system (year 1) linteger]
S2_Pix Number of Sentinel 2 pixels used in the parcel [integer]
LC YO Land cover type (see Table 2-3) (year 0) [integer]
Permanent grassland: 1 if the crop type [integer,
PGrass_Y0 belongs to this category, 0 otherwise (year 0) binary]
The new crop type code (each Ori_crop being [integer]
CTnum_Y0 associated to a unique CTnum) (year 0)
The crop type name associated to CTnumL4A [string]
CTL4A_YO (year 0)
The number of days of bare soil observed with [integer]
TTdays_S2_P1 Sentinel-2 (i.e. the sum of all bare soil periods
T observed in the parcel) for P1
AreaVeg_P1 The area under the curve for P1 [integer]
Ratio_Stability_P1 The stability ratio for P1 [integer]
Consec_Stability_p1 | The outlier consecutiveness for P1 [integer]
LC Y1 Land cover type (see Table 2-3) (year 1) [integer]
Permanent grassland: 1 if the crop type [ir?teger,
PGrass_Y1 belongs to this category, 0 otherwise (year 1) binary]
The new crop type code (each Ori_crop being [integer]
CTnum_Y1 associated to a unique CTnum) (year 1)
The crop type name associated to CTnumL4A [string]
CTL4A_Y1 (year 1)

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Ref

Sen4CAP_DDF-ATBD-ChangeCat v1.0

@esa Issue Page Date é:; " cap
@7y’ cammen agricuitenal polcy
1.0 33 31/03/2024 - ‘
Column name Description Value format
The number of days of bare soil observed with [integer]
TTdays_S2_P2 Sentinel-2 (i.e. the sum of all bare soil periods
- observed in the parcel) for P2
AreaVeg P2 The area under the curve for P2 [integer]
Ratio_Stability p2 | The stability ratio for P2 [integer]
Consec_Stability_p2 | The outlier consecutiveness for P2 [integer]
ChangeP1 Change score for P1 [integer]
Change prediction for P1, 1 if a change is [integer,
Pred_changeP1 predicted, 0 otherwise binary]
ChangeP2 Change score for P2 [integer]
Change prediction for P2, 1 if a change is [integrer,
Pred_changeP2 predicted, 0 otherwise binary]
Pred_change_P1_p2 | Sum of Pred_changeP1 & Pred_changeP2 [integer]
Change prediction according to L4A processor [integer,
ChangePred_CT results binary]
Pred conf 1 Confidence level of L4A crop type prediction [float]
Change score for P1 adapted with [integer]
ChangeP1_CT ChangePred_CT
Change prediction for P1 according to L4A [integer,
Pred_changeP1 CT prediction, 1 if a change is predicted, 0 binary]
B B otherwise
Change score for P2 adapted with [integer]
ChangeP2_CT ChangePred_CT
Change prediction for P2 according to L4A [integer,
Pred_changeP2_CT prediction, 1 if a change is predicted, 0 binary]
B B otherwise

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

@ esa Issue Page Date & cap

1.0 34 31/03/2024 VG S syttt vy

For TEMP & PERM grassland: assuming grassland is ploughed
Ploughing date will depend on the plantation date of crops
* If plantation in autumn:

¢ Presence of bare soil in P1

* Low veg. growing (young trees, but herb. cover)
* If plantation in spring:

¢ Presence of bare soil in P2 (Feb-Mar)

* Low veg. growing (young trees, but herb. cover)

Permanent
grassland

2
Permament crops are removed after the harvest <<
* If harvest before P1 or early P1:
* presence of bare soil in P1

Arable

Iand * vegetation growing and consecutiveness in P1
* vegetation consecutiveness in P2
e |If harvestin P1 or after:
* presence of bare soil in P2
Tempora ry * vegetation growing and consecutiveness in P2
grassland
Key: absence of harvest NN .
* If summer crop Y-1: For TEMP & PERM grassland: Permament crops are removed —
+ P1:bare soil (crop + Bare soil in P1 (crop sowing) * If winter crop is sown: Permanent
harvest+grass sowing) « Vegetation growing + * presence of bare soil in P1 I
* P2:no bare soil, veg. consecutiveness in P1and/or P2 * vegetation growing and consecutiveness in P1 / P2 Crop and
) consecutivness « If summer crop is sown in P1 or after:
* Ifwinter C}';Op Y'lt: N + presence of bare soil in P2
Pirves +Brazsisowing DEtore * vegetation growing and consecutiveness in P2
« absence of bare soil both in
P1and P2
Annual
cropland

Annual crop is harvested, then permanent crop in autumn or spring:

* Bare soil in P1 or P2

* If plantation in autumn: low veg. growing (young trees, but herb. cover)

* If plantation in spring: presence of bare soil + low veg. growing (young trees, but herb. Cover)

Figure 6-1. Interpretation grid

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA @ ®
94042, USA

Ref Sen4CAP_DDF-ATBD-ChangeCat v1.0

@ eésa Issue Page Date g:.‘,‘ cap

1.0 35 31/03/2024 S~

In order to break down the different possibilities for change, we have decided to distinguish between
temporary grassland and annual crops, even though they are part of the same agricultural category.

Arable land - Permanent grassland

The first important thing to note is that temporary grassland is considered as arable land. It is only after
5 years that these grasslands are considered as permanent grasslands. It is therefore concretely
impossible to detect a change in category from “temporary grassland” to “permanent grassland”.

A change of category from “permanent grassland” to “temporary grassland” is not considered because
it is impossible to detect and, in fact, virtually improbable. Similarly, the change from “annual crop” to
permanent grassland" is not considered because it is simply impossible.

A return from “permanent grassland” to an “annual crop”, on the other hand, can be observed. If a winter
crop is sown, the grassland will probably be turned over and bare soil will appear in P1. If it is a summer
crop that is sown, then this reversal could be observed in P2.

Arable land - Permanent cropland

A change from “permanent cropland” to “arable land” temporary grassland and annual crop) can be
observed after harvesting. Harvesting either takes place before or at the beginning of P1, or during or
after P1. In the first case, bare soil will most likely be observed in P1. In addition to bare soil, the markers
'vegetation growth' as well as 'stability' and 'consecutivity' should indicate a change. If harvesting takes
place during or after P1, a period of bare soil period could be observed in P2. The other markers may
also indicate a change.

As for the opposite change, it may take place in the first or second period. This change will be
accompanied by a period of bare soil and sparse vegetation (young trees).

Permanent crop - Permanent grassland

The change “permanent cropland” to “permanent grassland” is not considered because it is impossible.
The reverse change depends on when the crop is planted. If the crop is planted in autumn, it is likely to
be accompanied by a period of bare soil and poor vegetation growth. If the crop is planted in spring, it
is likely to be accompanied by a period of bare soil and a resumption of vegetation growth.

Change inside Arable Land

Although not considered to be a change in agricultural category, the change from temporary grassland
to annual crop is relatively likely. In this case, the grassland will be replaced by either a summer crop
or a winter crop. In the case of a winter crop, the grassland will most likely be turned over to P1, implying
a period of bare soil. P2 will be characterised by an increase in vegetation growth and by the activation
of stability and consecutive markers. If, on the other hand, a summer crop is sown, bare soil is unlikely
to be observed in the first period. In the second period, however, bare soil is very likely to be observed.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Ref

Sen4CAP_DDF-ATBD-ChangeCat v1.0

(ﬁ ecsa Issue

1.0

Page Date % cap
36 31/03/2024 -

7. Appendices

Algorithm 7-1. LPIS standardization

import geopandas as gpd
import pandas as pd

lpis = gpd.read_file(lpis_

lpis['idx_1lpis'] = 1lpis.in
lpis['area_lpis'] = lpis.a

old lpis = gpd.read_file(o
old lpis['idx_old 1lpis'] =
old lpis['area_old lpis']

inter_lpis = gpd.overlay(o

inter_lpis['area_inter']
inter_lpis['area_union']
inter_lpis['area_inter']
inter_lpis['area_sym_dif']
inter_lpis['change_ratio']

file)
dex
rea

1d_1lpis_file)
old_lpis.index
= old_lpis.area

1d_1lpis,lpis, how="intersection', keep_geom_type=True)

inter_lpis.area
inter_lpis['area_old_lpis'] + inter_lpis['area_lpis'] -

= inter_lpis['area_union'] - inter_lpis['area_inter']
= inter_lpis['area_sym_dif']/inter_lpis['area_union']

change_threshold = 0.05
area_threshold = 100000

same_lpis = inter_lpis.loc[(inter_lpis['area_sym_dif'] < area_threshold) &
(inter_lpis['change_ratio'] < change_threshold)]

id_stdlpis_lux_2020 = pd.unique(same_lpis['idx_old_lpis'])

id_stdlpis_lux_2021

pd.unique(same_lpis['idx_lpis'])

all indexes = same_lpis[['fid', 'NewID','fid_1"', 'NewID_1']]
all_indexes = all_indexes.rename(columns = {'fid_1' : 'fid_old', 'NewID_ 1':
'NewID_20', 'fid_2' : 'fid', 'NewID_2': 'NewID_21'})

all_indexes['global_id'] = range(1l, len(same_lpis)+1)

stdlpis_lux_2020
stdlpis_lux_2020
stdlpis_lux_2021

old_1pis.loc[id_stdlpis_lux_2020]
stdlpis_lux_2020.rename(columns = {'fid': 'fid_old'})
lpis.loc[id_stdlpis_lux_2021]

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

