

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 1 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Sen4CAP - Sentinels for Common
Agricultural Policy

Design Justification File
ATBD for Parcels Heterogeneity Check

Milestone CCN2 - Milestone 5

Authors Diane HEYMANS, Sophie BONTEMPS, Pierre DEFOURNY,
Laurentiu NICOLA, Cosmin UDROIU

Distribution ESA - Zoltan SZANTOI

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 2 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

This page is intentionally left blank

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 3 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Table of recorded changes

Version Date Reason

V0.1 13/01/2023 Internal version

v1.0 17/03/2023 First version delivered to ESA

v1.1 30/03/2023 Updated of the first version based on ESA comments

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 4 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Table of contents
1. Logical model – overview of the processor .. 9

2. Input data preparation ... 11

2.1 Subsidy application layer ... 11

2.1.1 Standardized subsidy application layer with quality flags .. 11

2.1.2 Parcels raster layers ... 12

2.1.3 Crop code LUT .. 12

2.2 Optical data .. 14

2.3 SAR data .. 15

2.3.1 Mosaicking and formatting.. 15

2.3.2 Gap-filling consideration ... 16

3. Clustering algorithm ... 17

3.1 Inputs and preparation of clustering ... 17

3.1.1 Input data ... 17

3.1.2 Import .. 17

3.1.3 Masking non-crop and no-data values ... 18

3.2 Clustering ... 18

3.2.1 kmeans_missing function .. 18

3.2.2 Image reconstruction and save temporary cluster raster ... 20

3.3 Spatial smoothing... 20

3.4 Spatial connectivity .. 21

4. Parcel-level analysis ... 23

4.1 Parcel-level statistics extraction ... 23

4.1.1 Inputs of the parcel values extraction .. 23

4.1.2 Statistics extraction at the parcel-level for S2 analysis ... 24

4.1.3 Statistics extraction at the parcel-level for S1 analysis ... 26

4.2 Parcel-level markers ... 27

4.2.1 Parameters of the markers ... 27

4.2.2 Markers of heterogeneity ... 28

4.2.3 Outputs of the Parcel-level extraction and markers ... 29

4.3 Heteregeneity decision rules .. 30

4.3.1 Period analysis for decision ... 31

4.3.2 Output of the decision rules ... 33

5. Output ... 34

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 5 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

5.1 Output of the clustering ... 34

5.2 Output of the parcel level extraction .. 34

5.3 Output of the decision rules ... 34

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 6 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

List of figures

Figure 1-1. General workflow of the L4D heterogeneity detection algorithm .. 9
Figure 1-2. Period’s representation of the general workflow of the L4D heterogeneity detection algorithm 10
Figure 2-1. Selection of the used S2 pixels by parcel ... 12
Figure 2-2.Workflow of the mosaicking step to produce weekly mosaics of S1 images 15

List of Algorithm

Algorithm 2-1. Temporal resampling of S2 time series algorithm .. 15
Algorithm 3-1. Creation of images stacks over the period P ... 18
Algorithm 3-2. Masking non crop and no data pixels ... 18
Algorithm 3-3. Kmeans_missing function pseudo-code .. 19
Algorithm 3-4. Saving the cluster outputs into geotiff .. 20
Algorithm 3-5. Cluster images reconstruction... 20
Algorithm 3-6. Spatial smoothing algorithm .. 21
Algorithm 3-7. Spatial connectivity function ... 22
Algorithm 4-1. NDVI import before the statistics extraction with S2 .. 25
Algorithm 4-2. Cluster_extract python function ... 25
Algorithm 4-3. Extraction cluster values python loop ... 27
Algorithm 4-4. Heterogeneity markers generation for S2 ... 29
Algorithm 4-5. Heterogeneity markers generation for S1 ... 29
Algorithm 4-6. Period analysis for decision on the heterogeneity using only S2 results at the parcel 32

List of tables

Table 2-1. Standardized subsidy application layer with quality flags ... 11
Table 2-2. Content of the standardized subsidy application layer with quality flags .. 11
Table 2-3. Parcels raster layers ... 12
Table 2-4. Content of the L4A crop code LUT .. 13
Table 2-5. Inputs and outputs of the constant_step_interpolation_masked_i16 algorithm 14
Table 3-1. Inputs of the clustering algorithm .. 17
Table 3-2. List of arguments and outputs of the kmeans_missing function ... 18
Table 3-3. List of arguments and outputs of the remove_isolated function ... 20
Table 3-4 List of arguments and outputs of the LocalClassConnectivityIndex function .. 21
Table 4-1. Inputs of the parcel values extraction algorithm for S2 ... 23
Table 4-2. Inputs of the parcel values extraction algorithm for S1 ... 24
Table 4-3. Parameters of heterogeneity markers ... 28
Table 4-4. Heterogeneity markers for S2 and S1 calculated over each period P ... 28
Table 4-5. Columns of the parcel-level extraction and markers results for the period p in the S2 analysis 29
Table 4-6. Columns of the parcel-level extraction and markers results for the period p in the S1 analysis 30
Table 4-7. Inputs of the period analysis for the decision algorithm .. 31
Table 4-8. Columns of period analysis for decision making. ... 33

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 7 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

References

ID Title

RD.1 Sen4CAP Design Definition File - ATBD for the Subsidy Application Layer Preparation, version 1.1,
30 March 2021

RD.2 Sen4CAP Design Definition File - ATBD for the Crop Type mapping, version 1.3, 1 April 2021

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 8 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

List of acronyms

Acronym Definition

ATBD Algorithm Theoretical Basis Document

GSAA GeoSpatial Aid Application

LPIS Land Parcel Identification System

LUT Look-Up Table

NDVI Normalized Difference Vegetation Index

NDWI Normalized Difference Water Index

PA Paying Agency

RF Random Forest

S1 Sentinel-1

S2 Sentinel-2

SAR Synthetic Aperture Radar

Sen2-Agri Sentinel-2 for Agriculture

SMOTE Synthetic Minority Over-Sampling Technique

SWIR Short-Wave Infrared

UTM Universal Transvere Mercator

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 9 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

1. Logical model – overview of the processor
The developed parcel heterogeneity module relies on a clustering algorithm, run on optical Sentinel-2
(S2) surface reflectance and Synthetic Aperture Radar (SAR) Sentinel-1 (S1) time series at the tile-level.
Clusters are then interpreted at the parcel-level to decide if the parcel is heterogeneous or not.

Figure 1-1 presents the general workflow of the parcel heterogeneity detection algorithms. There are 3
main components:

1. Input data preparation:
a. Declaration data (hereafter referred to as “subsidy application layer”);
b. Optical data;
c. SAR data;

2. Clustering:
a. Clustering algorithm;
b. Spatial smoothing;
c. Spatial connectivity;

3. Parcel-level analysis:
a. Parcel-level statistics extraction;
b. Parcel-level markers computation;
c. Heteregeneity decision rules.

Optical and SAR data pre-processing is embedded in the Sen4CAP system. From the pre-processed data
(Level 2A (L2A) time series from S2 and backscatter and coherence time series from S1), resampled
data are created every 10 days for S2 and every 7 days for S1 in the raster format.

The clustering is then applied on those resampled data. Then, isolated pixels are removed using a spatial
smoothing operator and the connectivity between clusters inside each parcel is calculated. The processor
is designed to run all these steps at the tile-level and for each period P (defined by the user).

In the final component, varying statistics are derived from the clustering steps for each parcel and
heterogeneity markers are derived for each period P. Heterogeneity decision rules are finally applied to
decide if the parcel is heterogeneous or not by looking at the markers over successive periods P.

Figure 1-1. General workflow of the L4D heterogeneity detection algorithm

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 10 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Figure 1-2 illustrates the periodicity of the general workflow. From the start of the season, the resampled
images are produced along the season. At each period P (defined by the user), the clustering algorithm
is run (yellow box from Figure 1-1) and the extraction of statistics and markers is run (first two steps of
green box in Figure 1-1). Once at least three periods P are available, it is possible to create the first
decision results. The decision result will evolve with the availability of new periods P. Figure 1-2
represents the workflow using S2 data, but the same applies for S1.

Figure 1-2. Period’s representation of the general workflow of the L4D heterogeneity detection algorithm

In the following sections, the different steps are presented in details. For most of these steps, the specific
input and output variables, as well as the code or pseudo-code, are given.

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 11 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

2. Input data preparation

2.1 Subsidy application layer
In order to ensure a certain level of consistency between the different Sen4CAP processors, the
preparation of the subsidy application layer is performed prior to the execution of all processors. The
subsidy application layer preparation is described in a dedicated ATBD (RD.1). The outputs of the
subsidy application layer preparation that are used by the L4D parcels heterogeneity processor are
described below.

2.1.1 Standardized subsidy application layer with quality flags

The standardized subsidy application layer with quality flags (Table 2-1):

• is stored as a PostGIS layer in the PostgreSQL database of the system;
• is projected in national projection;
• has the following name: decl_{site}_{year};
• has the same number of rows (parcels) than the original subsidy application layer.

Table 2-1. Standardized subsidy application layer with quality flags

Output data Description Default value
[format]

decl_{site}_{year} The standardized version of the subsidy application layer with the
quality flags: geometry and spectral information

[GPKG] & [CSV]

It contains the attribute fields listed in Table 2-2 (fields in orange are already present in the original
subsidy application layer). Attributes coming from the LUT (Table 2-4) are also available in the layer
at the parcel level. This layer is available as .gpkg and .csv.

Table 2-2. Content of the standardized subsidy application layer with quality flags

Field name Role Default value
[format]

Ori attributes All the original attributes of the original delaration dataset [integer, float or
string]

ori_id Copy of the content of the attribute field defined by the user
with the parcel id

[string]

ori_hold Copy of the content of the attribute field defined by the user
with the holding id

[string]

ori_crop Copy of the content of the attribute field defined by the user
with the crop code

[input format: string
or integer]

NewID New sequential ID of the parcel [integer]

HoldID New sequential ID of the holdings [integer]

GeomValid Identify parcels for which no polygon exists in the subsidy
application layer or with a not valid geometry

[integer, binary]

Duplic Identify parcels that have the exact same geometry as another [integer, binary]

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 12 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Area_meters Parcel area in the UTM projection (m²) [integer]

Overlap Identify parcels which overlaps with neighbouring parcels [integer, binary]

ShapeInd Shape index of the parcel [float]

S1pix Indicates the number of used S1 pixels in the parcel [integer]

S2pix Indicates the number of used S2 pixels in the parcel [integer]

2.1.2 Parcels raster layers

The parcels raster layers are the rasters that are produced for both sensors (S2 and S1) and by tile, with
the NewID as value. The NewID of the parcel has been assigned as value only for the pixels that have
their centroid located within the parcels inner buffer layers of 5 m for S2 and 10 m for S1 (Figure 2-1).
Only these pixels will be used to extract the S1 and S2 spectral values.

Figure 2-1. Selection of the used S2 pixels by parcel

These layers (Table 2-3):

• are .tif files;
• are produced by S2 tile;
• are projected in the WGS 84 / UTM zone {x} corresponding to the UTM zone of the S2 tile;
• have a value = NewID of the parcels;
• have a resolution of 10m for S2 and 20m for S1.

Table 2-3. Parcels raster layers

Output variable Role Default value [format]

decl_{site}_{year}_{ti}_S2 Raster of all the used S2 pixels by parcel (value as
NewID); {ti} = name of the tile (ex. 31UFS) [tif] (nr of tiles)

decl_{site}_{year}_{ti}_S1 Raster of all the used S1 pixels by parcel (value as
NewID); {ti} = name of the tile (ex. 31UFS) [tif] (nr of tiles)

2.1.3 Crop code LUT

If the original subsidy application layer contains a large number of crop types, it considerably improves
the classification accuracy to group together the crop types that are by definition very similar or that

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 13 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

have a very similar phenology. It is done in the crop code Look-Up Table (LUT), which makes this
grouping and defines new crop codes (CTnumL4A) and crop names (CTL4A).

In addition, to check the compliancy of the holdings regarding the crop diversification rules, a series of
information should be defined by crop type: the crop diversification class (CTnumDIV and CTDIV) and
whether or not it belongs to one or more of the categories Eligible Agricultural Area (EAA), Arable
Land (AL), Permanent grassland, Temporary grassland, Fallow land and Crop under water.

All this information is summarized in a csv file, the crop code LUT, which:

• is stored as a table in the PostgreSQL database of the system;
• is named lut_{site}_{year};
• contains the following information (Table 2-4).

These attributes are also stored at the parcel level in the standardized subsidy application
(decl_{site}_{year}).

Table 2-4. Content of the L4A crop code LUT

Field name Role Default value [format]

Ori_crop The initial crop code from the subsidy application layer [integer or string]

CTnum The new crop type code (each Ori_crop being associated
to a unique CTnum)

[integer]

CT The name of the crop type in English [string]

LC

The main land cover class of the crop type:

o 0: other natural areas
o 1: annual crop
o 2: permanent crop
o 3: grassland
o 4: fallow land
o 5: greenhouse and nursery

[integer]

CTnumL4A The new crop type code resulting of the grouping of the
CTnum for the classification

[integer]

CTL4A The crop type name associated to CTnumL4A [string]

CTnumDIV The crop diversification class code [integer]

CTDIV The crop diversification class name [string]

EAA Eligble agricultural area: value 1 if the crop type belongs to
this category, value 0 otherwise

[integer, binary]

AL Arable Land: value 1 if the crop type belongs to this
category, value 0 otherwise

[integer, binary]

PGrass Permanent grassland: value 1 if the crop type belongs to
this category, value 0 otherwise

[integer, binary]

TGrass Temporary grassland: value 1 if the crop type belongs to
this category, value 0 otherwise

[integer, binary]

Fallow Fallow land: value 1 if the crop type belongs to this
category, value 0 otherwise

[integer, binary]

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 14 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Cwater Crop under water: value 1 if the crop type belongs to this
category, value 0 otherwise

[integer, binary]

2.2 Optical data
The optical data pre-processing is done in Sen4CAP, based on the MAJA algoritm. Only the bands at
10 meters resolution are used in this processor, as well as the Normalized Difference Vegetation Index
(NDVI).

The optical data preparation corresponds, for these bands, to a temporal resampling and a gapfilling
through linear interpolation of valid data at the pixel-level.

The objective of the temporal resampling is to generate a reflectance image time series which is gap-
filled with respect to missing data and temporally resampled on a regular 10-day grid. Missing data are
refered to as the data masked as cloud, cloud shadow and saturated pixels. Implementation details are
provided in a C++ script that can be launched as described in Algorithm 2-1. This algorithm should be
launched independently for each S2 tile and for each S2 bands/variables.

Here are the inputs of the constant_step_interpolation_masked_i16 algorithm.
Table 2-5. Inputs and outputs of the constant_step_interpolation_masked_i16 algorithm

Input names Role Default value
[format]

Input_file
The input file is a multiband raster (or vrt) containing
all the images available for the period and for the S2
tile.

[tif] or [vrt] (nr of
tiles*number of
bands)

Mask_file
The mask file is a multiband raster (or vrt) that has the
same size of the input_file but contains the cloud mask
at 10m resolution.

[tif] or [vrt] (nr of
tiles*number of
bands)

Data_time Data times corresponding to the input bands. (Eg.
15#22#25#32#35#42#45#52#52#55#62)

[float]

Period
Period for output bands times. Begin#interval#end.
For a year long period with a 10 days interpolation:
0#10#360

[float]

No-masked values Values of the mask_file corresponding to the valid
observation. Val1#Val2#Val3 With MAJA algorithm: 0

0 [int]

Output_nan_value Value of the nan in the output (optional) -10000

max_dist Maximum distance between two valid observations in
days. If a hole length is > max_dist, it remains a hole

30 [int]

Output name Role
Default value
[format]

New_output_file Name of the output_file containing the multiband
raster with a constant step interpolation masked.

[tif] or [vrt] (nr of
tiles*number of
bands)

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 15 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Algorithm 2-1. Temporal resampling of S2 time series algorithm
/usr/bin/constant_step_interpolation_masked_i16 /path_vrt/S2MAJA454_31UFS_2021_NDVI_2.vrt
/path_vrt_mask/S2MAJA454_31UFS_2021_MaskNDVI5.vrt /path_out/S2MAJA454_31UFS_2021_NDVIMResampled4.tif
2#5#7#10#12#15#17#20#22#25#27#30#32#35#37#40#42#45#47#50#52#55#57#60#62#65#67#70#72#75#77#80#82#85#87#9
0#92#95#97#100#102#105#107#110#112#115#117#120#122#125#127#132#135#137#140#142#145#147#150#152#155#157#
160#162#165#167#170#172#175#177#180#182#185#187#190#192#195#197#200#202#205#207#210#212#215#217#220#222
#225#227#230#232#235#237#240#242#245#247#250#252#255#257#260#262#265#267#270#272#275#277#280#282#285#28
7#290#292#295#297#300#302#305#307#310#315#317#320#322#325#327#330#332#335#337#340#342#345#350#352#355#3
57#360#362#365 0#10#360 0

2.3 SAR data
The SAR data pre-processing is done in Sen4CAP and results in backscatter and coherence time series.
The parcels heterogeneity algorithm relies on the backscatter VV, backscatter VH, coherence VV and
coherence VH weekly (7 days) time series. The computation of these weekly mosaics is already
implemented in the crop type L4A processor of the Sen4CAP system (RD.2).

2.3.1 Mosaicking and formatting

The method is designed to look for all the S1 images overlapping a given S2 tile within a given period.
It produces time series of S1 mosaics combining images acquired within 7-day period. This step
produces a temporally regular time series of mosaics fully covered by valid pixel (Figure 2-2). For
classification purposes, the mosaics shall not be covered by no data pixels.

Figure 2-2.Workflow of the mosaicking step to produce weekly mosaics of S1 images

The mosaics are formated to match the format (resolution, extent and projection) of the S2 image given
as input. The weekly mosaics are generated for each calendar week, this way, the mosaics are
independent of the season duration.

The mosaicking step is performed independently for the two passes – ascending and descending – and
for the two polarimetry – VV and VH – respectively for the coherence and the backscattering. It
therefore results in 8 independent time series of

1. Coherence – Ascending – VV
2. Coherence – Ascending – VH
3. Coherence – Descending – VV
4. Coherence – Descending – VH
5. Backscattering intensity – Ascending – VV
6. Backscattering intensity – Ascending – VH
7. Backscattering intensity – Descending – VV
8. Backscattering intensity – Descending – VH

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 16 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

2.3.2 Gap-filling consideration

At the time of the processing chain design, no data filtering was applied on the SAR time series. The
added value of applying a temporal resampling was therefore not highlighted. Only in the case of
missing acquisitions, a gap-filling step must be applied.

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 17 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

3. Clustering algorithm

The clustering algorithm is run for Sentinel-1 and Sentinel-2 in parallel in two separate processing
chains. For each S2 or S1 tile (S1 tile corresponding to S1 data clipped over the S2 tile extent) and for
each period P, the clustering algorithm is run at the pixel-level and generates one raster of clusters.

3.1 Inputs and preparation of clustering
Before running the clustering algorithm, S1 and S2 images over the period P are imported and all pixels
corresponding to non-crop areas and no data are masked using the declaration dataset imported and
rasterized as described in section 2.1.2.

3.1.1 Input data

Table 3-1 describes the inputs of the clustering algorithm.
Table 3-1. Inputs of the clustering algorithm

Input names Role Default value
[format]

decl_{site}_{year}_{ti}_S2
or
decl_{site}_{year}_{ti}_S1

Raster of all the used S2/S1 pixels by parcel (value as NewID);
{ti} = name of the tile (ex. 31UFS) [tif] (nr of tiles)

site site of the sen4cap system related to the AOI. [string]

imG_path Path to the resampled images of the period p and for the
band_list.

[string]

P

Period on which the clustering is done. Minimum of 20days
(2 resampled S2 images) or 21 days (3 resampled S1 images).
Ex. Month of march (30 days – 3 resampled S2 images and 4
resampled S1 images)

30 [days]

band_list

List of the bands (variables) that will be used in the
clustering. The default for S2:

[B2, B3, B4, B8, NDVI]

The default for S1:

[Cohe_Asc_VV, Cohe_Asc_VH, Cohe_Desc_VV,
Cohe_Desc_VH, Amp_Asc_VV, Amp_Asc_VH, Amp
_Desc_VV, Amp _Desc_VH]

S2 list.

S1 list.

[list of string]

n_cl
Number of clusters. Varies according to the landscape. By
default, this number is 4 in the S2 clustering and 5 in the S1
clustering of more hilly area.

4 when S2, 5
when S1 [int]

3.1.2 Import

The step consists in creating a stack of S2 resampled images and S1 weekly mosaics over the period P.
The images of the period P are retrieved from the folder where they are stored in the imG_path.

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 18 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

The img will store the information of the bands of the band_list and all dates of the date_list. The n_var
is the total numbe of variable (band_list * date_list). The img dimension is (x, y, n_var) with x, y being
the size of the rater (number of pixels in row, column).

Algorithm 3-1. Creation of images stacks over the period P
 img = np.zeros((img_ds.RasterYSize,img_ds.RasterXSize,n_var),
 gdal_array.GDALTypeCodeToNumericTypeCode(img_ds.GetRasterBand(1).DataType))
 for d in range(len(date_list)):
 date = date_l[d]
 for b in range(len(band_list)):
 bands_n = band_list[b]
 All_images = glob.glob(f'{imG_path}/*_{bands_n}.tif')
 img_ds = gdal.Open(All_images[0],gdal.GA_ReadOnly)
 img_dsB = img_ds.GetRasterBand(date)
 img_dsA = img_dsB.ReadAsArray()
 img[:, :,(d*len(band_list))+b] = img_dsA

3.1.3 Masking non-crop and no-data values

Once the S1 and S2 images are uploaded into a stack of image (img), they need to be masked to remove
non-cropland areas and in the case of S2, the no data. This is done using the “parcels raster layer” (see
section 2.1.2) named decl_{site}_{year}_{i}_S2 or decl_{site}_{year}_{i}_S1. The values of these
raster files correspond to the NewID values of the subsidy layer after the application of the inner buffer
inside each parcel.

In these raster files, all pixels outside of the agricultural parcels are therefore coded as “0”. In this step,
only the pixels with values different from 0 are kept, thus removing all non-cropland areas. For S2, the
no-data value (-10 000 and 0) are also set as “nan”.

Algorithm 3-2. Masking non crop and no data pixels
 img0 = img[imgR!=0,:]
 img0 = img0.astype(float)
if satellite_id == ‘S2’:
 img0[img0==-10000] = np.nan
 img0[img0==0] = np.nan

3.2 Clustering
The clustering is done through a python function called “kmeans_missing”, which has the specificity to
be able to handle the no-data. The output of the clustering is then reshaped and saved.

3.2.1 kmeans_missing function

Table 3-2 lists the arguments and outputs of the kmeans_missing function.
Table 3-2. List of arguments and outputs of the kmeans_missing function

Arguments Role Default value
[format]

X An [n_samples, n_features] array of data to cluster Array of n_var
dimensions

n_cl Number of clusters to be used in the KMeans algorithm n_cl [int] - see
value in Table 3-1

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 19 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

max_iter Maximum number of iterations allowed for the algorithm to
converge 10 [int]

Outputs Role Default value
[format]

Labels An [n_samples] vector of integer labels Array of 1
dimension

Centroids An [n_cl, n_features] array of cluster centroids Vector of n_var
length

X_hat Copy of X with the missing values filled in Array of n_var
dimensions

This function allows running a KMeans algorithm, while filling in missing values by using the cluster
centroids value:

• The function looks first for missing values in the array and stores this information in a new array
called X_hat;

• Then, a first iteration is started (using the function MinibatchKMeans) using an array where the
missing value are replaced by “0”;

• After this iteration, the “0” corresponding to the missing values are replaced by the value of the
centroids of the clusters to which they belong;

• Iterations continue, and each time, the new centroid values are recorded instead of the missing
values;

• When the labels have stopped changing between successive iterations, it means there is a
convergence and the algorithm stops.

The pseudo-code of this Kmeans_missing function is given in Algorithm 3-3.
Algorithm 3-3. Kmeans_missing function pseudo-code

def kmeans_missing(X, n_cl, max_iter=10):
 # Initialize missing values to their column means
 missing = ~np.isfinite(X)
 mu = np.nanmean(X, 0, keepdims=1)
 X_hat = np.where(missing, mu, X)
 for i in range(max_iter):
 if i > 0:
 # initialize KMeans with the previous set of centroids. this is much
 # faster and makes it easier to check convergence (since labels
 # won't be permuted on every iteration), but might be more prone to
 # getting stuck in local minima.
 cls = cluster.MiniBatchKMeans(n_cl, init=prev_centroids)
 else:
 # do multiple random initializations in parallel
 cls = cluster.MiniBatchKMeans(n_cl)
 # perform clustering on the filled-in data
 labels = cls.fit_predict(X_hat)
 centroids = cls.cluster_centers_
 # fill in the missing values based on their cluster centroids
 X_hat[missing] = centroids[labels][missing]
 # when the labels have stopped changing then we have converged
 if i > 0 and np.all(labels == prev_labels):
 break

 prev_labels = labels
 prev_centroids = cls.cluster_centers_
 return labels, centroids, X_hat

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 20 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

3.2.2 Image reconstruction and save temporary cluster raster

The clusters labels are retrieved and stored into the t_cluster variable. 1 is added to all the labels to avoid
having a cluster with the value 0.

Then, the labels are written in the “parcels raster layers” (decl_{site}_{year}_{ti}_S2 and
decl_{site}_{year}_{ti}_S1) where the values are different from 0. where the values were not equal to
0. The raster is finally reshaped into a matrix (t_clusterE) and then saved to the geotiff format (using
the write_geotiff function), as shown in the Algorithms 3-4 and 3-5.

The temporary cluster files (for S1 and S2) are named L4D_Cl{S1 or S2}_{site}_{ti}_{p}_tmp.tif.
Algorithm 3-4. Saving the cluster outputs into geotiff

def write_geotiff(filename, arr, in_ds):
 if arr.dtype == np.float32:
 arr_type = gdal.GDT_Float32
 else:
 arr_type = gdal.GDT_Int32

 driver = gdal.GetDriverByName("GTiff")
 out_ds = driver.Create(filename, arr.shape[1], arr.shape[0], 1, arr_type)
 out_ds.SetProjection(in_ds.GetProjection())
 out_ds.SetGeoTransform(in_ds.GetGeoTransform())
 band = out_ds.GetRasterBand(1)
 band.WriteArray(arr)
 band.FlushCache()
 band.ComputeStatistics(False)

Algorithm 3-5. Cluster images reconstruction
#Open raster of mask from the data preparation
raster = gdal.Open(raster_5mBuffer,gdal.GA_ReadOnly)
imgR = raster.ReadAsArray()
newshpR = (imgR.shape[0]*imgR.shape[1])
imgR0 = imgR[:,:].reshape(newshpR)
#retrieve the labels from the kmeans_missing function
t_cluster = t_missing[0]
X_clusterOut = t_cluster +1 #1 added to avoir 0 values
#get the label value in the mask layer reshaped
imgR0[imgR0!=0]=X_clusterOut
t_clusterE = imgR0.reshape(img_dsA.shape) #in matrix form
write_geotiff(file_cluster,t_clusterE,raster)

3.3 Spatial smoothing
A spatial filter is applied on the cluster outputs in order to reduce the number of isolated pixels. This
spatial smoothing is based on the “remove_isolated” C++ function.

The “remove_isolated” function needs to define six inputs: the input and output files (that are in the tiff
format), the list of class, the no-data value, the radius of the window in which looking for isolated pixels
and the threshold to be considered as isolated and to be removed and replaced (Table 3-3).

Table 3-3. List of arguments and outputs of the remove_isolated function

Arguments Role Default value
[format]

File_in Temporary raster of cluster – one by tile [tif] (nbr of tile)

List_class List of classes (comma-separated without space). Depend on the
number of clusters – range from 1 to n_cl+1

1,2,3,4,5 [string]
(cluster label)

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 21 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

noDataClassif No-data value 0 [int]

Radius Radius of search (window of 3x3 pixels when radius = 1) 1 [int]

Min_nb Isolated pixel threshold 1 [int]

Output Role Default value
[format]

File_out_post
Raster of cluster without isolated pixel named L4D_Cl{S1 or
S2}_{site}_{ti}_{p}.tif

 – one by tile (ti)
[tif] (nbr of tile)

The function removes the isolated pixels when the class it belongs to is weakly present in the search
window, i.e. when the number of pixels having the same label is below the threshold “Min_nb”, or if
the pixel is labelled as no-data. In order to replace the removed pixels, the majority of the neighbour
values within the search window is taken. The script is in C++ and can be launched as shown in
Algorithm 3-6.

 Algorithm 3-6. Spatial smoothing algorithm
def remove_isolated(file_in, file_out, noDataClassif, min_nb=3, radius=1):
 cmd = '/pathtoscript/removeIsolated'
 cmd += f' {file_out}'
 cmd += f' {file_in}'
 cmd += f' {min_nb}'
 cmd += f' {radius}'
 cmd += f' {noDataClassif}'
 subprocess.check_call(cmd, shell=True)

3.4 Spatial connectivity
This step aims at calculating the spatial connectivity at the parcel-level. This spatial connectivity will
be used as a proxy for the compactness when deriving markers for the parcels’ heterogeneity (section
0).

This step uses as input the output of the spatial smooting, i.e. a raster of clusters without isolated pixels.
It generates a new raster file describing the connectivity using a function named
“LocalClassConnectivityIndex”, coded in C++.

Table 3-4 lists the arguments and outputs of this LocalClassConnectivityIndex function while the script
is shown in Algorithm 3-7.

Table 3-4 List of arguments and outputs of the LocalClassConnectivityIndex function

Arguments Role Default value [format]

File_out_post
Raster of cluster after the removal of isolated pixels – one by tile

(ex. L4D_Cl{S1 or S2}_{site}_{ti}_{p}.tif)
 [tif] (nbr of tile)

RadiusC Radius of search (window of 3x3 pixels when radius = 1) 1 [int]

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 22 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Output Role Default value
[format]

File_out_post2
Raster of connectivity named (L4D_Cl{S1 or
S2}_{site}_{ti}_{p}_Connect.tif)

 – one by tile (ti)
[tif] (nbr of tile)

For each pixel within the parcel, the function counts in the radius of search (RadiusC) the number of
pixels having the same label (i.e. belonging to the same cluter). A pixel having different clusters in this
RadiusC will have low values of connectivity while a pixel surrounded by the same cluster will have
high values.

Algorithm 3-7. Spatial connectivity function
def localConnectivity(file_in,file_out,radiusC):
 cmd = '/pathtoscript/localClassConnectivityIndex'
 cmd += f' {file_out_post1}'
 cmd += f' {file_out_post}'
 cmd += f' {radiusC}'
 #print(cmd)
 subprocess.check_call(cmd, shell=True)

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 23 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

4. Parcel-level analysis

The analysis at the parcel-level is done in three steps. First, statistics are extracted at the parcel-level for
each cluster generated in the section 3 and so, for each period P. Second, these statistics are used to
generate heterogeneity markers, still at the parcel-level and for each period P. Finally, these markers are
analyzed over a longer period PM (corresponding to at least 3 periods P) to support the decision of
heterogeneity following the traffic light approach and providing confidence levels (see Figure 1-2).

4.1 Parcel-level statistics extraction
The parcel-level stastics extraction is done for each cluster produced in the clustering component (see
section 3). It differs sligthy for S1 and S2. Both workflows are explained below.

4.1.1 Inputs of the parcel values extraction

For each period P, which correspond to one clusters’ raster file produced, and for each S2/S1 tile (ti), a
series of files/parameters are needed for the extraction. These inputs are described in Table 4-1 for S2
and in Table 4-2 for S1.

Table 4-1. Inputs of the parcel values extraction algorithm for S2

Input names Role Default value
[format]

decl_{site}_{year}_{
ti}_S2

Raster of all the used S2 pixels by parcel (value as NewID); {ti} =
name of the tile (ex. 31UFS)

[tif] (as many as
existing tiles)

decl_{site}_{year} Parcel declaration after the preparation by the Sen4CAP system [csv]

File_out_post
Raster of clusters without isolated pixels named
L4D_ClS2_{site}_{ti}_{p}.tif

 – one by tile (ti)

[tif] (as many as
existing tiles)

File_out_post2
Raster of connectivity named L4D_ClS2_{site}_{ti}_{p}_Connect.tif

 – one by tile (ti)
[tif] (nbr of tile)

Image_NDVI List of images during the p period of NDVI. [string]

Site Site of the sen4cap system [string]

P
Period on which the clustering is done. Minimum of 20 days (2
resampled S2 images)

E.g. March = 30 days corresponding to 3 resampled S2 images

30 [days]

n_im_p Number of images from the resampling needed to complete the
period.

3 [int]

n_cl Number of clusters
n_cl [int] - see
value in Table
3-1

PerHetero
Pixels percentage corresponding to the biggest cluster in the parcel.
If the biggest cluster is above PerHetero, the parcel is considered as
homogeneous.

0.9 [float]

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 24 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

NPixClS2 Minimum number of pixels in a cluster to compute the distNDVI. 20 [int]

Outputs Description Default value
[format]

csv_out Table containing the extraction at the parcel level of the cluster’s
statistics, named L4D_HeteS2_{site}_{year}_{p}.csv

[csv]

Table 4-2. Inputs of the parcel values extraction algorithm for S1

Input names Role
Default
value
[format]

decl_{site}_{year}_{
ti}_S1

Raster of all the used S1 pixels by parcel (value as NewID); {ti} = name
of the tile (ex. 31UFS)

[tif] (as many
as existing
tiles)

decl_{site}_{year} Parcel declaration after the preparation by the Sen4CAP system [csv]

File_out_post
Raster of clusters without isolated pixels named
L4D_ClS1_{site}_{ti}_{P}.tif

 – one by tile (ti)

[tif] (as many
as existing
tiles)

File_out_post2
Raster of connectivity named: L4D_ClS1_{site}_{ti}_{p}_Connect.tif

 – one by tile (ti)
[tif] (nbr of
tile)

Site Site of the sen4cap system [string]

p
Period on which the clustering is done. Minimum of 20 days (2
resampled S2 images)

E.g. March = 30 days corresponding to 3 resampled S2 images

30 [days]

n_cl Number of clusters
n_cl [int] - see
value in Table
3-1

PerHetero
Pixels percentage corresponding to the biggest cluster in the parcel.
If the biggest cluster is above PerHetero, the parcel is considered as
homogeneous.

0.9 [float]

Outputs Description Default
value
[format]

csv_out Table containing the extraction at the parcel level of the cluster
statistics, named L4D_HeteS1_{site}_{year}_{p}.csv

[csv]

4.1.2 Statistics extraction at the parcel-level for S2 analysis

Before the extraction, the NDVI raster files corresponding to the period P are imported in the
environment (Algorithm 4-1). An array (img) having the size of (x, y, len(date_l)) with x, y being the
number of pixels in the rows and columns of the NDVI images and len(date_l) being the number of
resampled images used in the clustering of the period P (see date_list in section 3.1.2). The l_var is a
list that will be used to identify the date of NDVI later in the extraction step.

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 25 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Algorithm 4-1. NDVI import before the statistics extraction with S2
img = np.zeros((img_ds.RasterXSize,img_ds.RasterYSize,len(date_l)),
 gdal_array.GDALTypeCodeToNumericTypeCode(img_ds.GetRasterBand(1).DataType))
l_var = []
for d in range(len(date_l)):
 date = date_l[d]
 img_dsB = img_ds.GetRasterBand(date)
 img_dsA = img_dsB.ReadAsArray()
 img[:, :,d] = img_dsA
 l_var.insert(d,f'{bandextracted}_{date}')
l_var.insert(0,'label')

Next, the following raster files related to the period of analysis P and the tile (ti) are imported in the
environment:

• decl_{site}_{year}_{ti}_S2.tif is imported as imR;
• file_out_post is imported as Cluster_extract;
• file_out_post2 is imported as Cluster_connectE.

A stack (imgC) is done with these three raster files (which should all have the same size (x, y) and the
same size as the img previously imported (see Algorithm 4-1).

Then a loop on each parcel (i) of the tile (ti) is performed to extract a set of statistics using a Python
loop (Algorithm 4-2) which runs as follows.

First, the position of the parcel i is identified using the imgR in the imgC stack and stored into cl_i. Using
this position (cl_i), it extracts the values from the cluster using the cluster_extact in imgC and stores it
into val_poly variable. This step allows calculating the number of pixels in each cluster c (cl_{c}) and
its related percentage (clP_{c}).

Then, if the maximum percentage of a cluster is lower than PerHetero (0.9), the parcel is flagged as
potentially heterogeneous (Hete = 1) and is further analysed. Otherwise, Hete is set to 0 and the analysis
stops there; the script moves to the next parcel.

In case of Hete = 1, the script continues as such:

 It extracts the values of the connectivity (from the stack imgC) at the position of the parcel
(cl_i) and computes the mean of the connectivity values associated to all pixels (ouput
Compact);

 Another variable generated is the CompactA that takes the mean of the connectivity values
associated to all pixels normalized by the log of the area of the parcel.

 From the img, the NDVI values are extracted at the position of the parcel (cl_i). The no-
data values (-10000) are masked. The number of no-data on the parcel allow to generate
two flags.

o HoleS2 is the sum of images in the period p for the parcel that is fully covered by
NA (maximum is n_im_p);

o HoleS2Part is the sum of images in the period p for the parcel that is partially
covered by NA (maximum is n_im_p).

 The distances between each cluster that include more pixels than NPixClS2 are calculated
by taking the difference between the mean of the two clusters in absolute. From all the
differences computed (dist) only the maximum of these differences is kept and stored into
the distNDVI.

Algorithm 4-2. Cluster_extract python function
df_cl = pd.DataFrame(columns=['NewID','Hete'])
for i in tqdm(newid_l):
 cl_i = np.where(imgC[0] == i)
 val_poly = imgC[1,cl_i[0],cl_i[1]]

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 26 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 val_poly1 = val_poly[val_poly!=0]
 v_countP = np.bincount(val_poly1)/len(val_poly1)
 v_count = np.bincount(val_poly1)
 df_cl1 = pd.DataFrame({'NewID':[i]})
 df_cl1['ShapeInd'] = lpis_csv['ShapeInd'][i]
 df_cl1['LC'] = lpis_csv['lc'][i]
 if sum(val_poly)>0 :
 for c in range(1,max(val_poly1)+1):
 df_cl1[f'clP_{c}'] = v_countP[c]
 df_cl1[f'cl_{c}'] = v_count[c]

 if len(v_count) == 0:
 df_cl1['Hete'] = 2
 df_cl1['distNDVI'] = 0

 elif max(v_countP) < PerHetero:
 val_Connect = imgC[2,cl_i[0],cl_i[1]]
 valAll_poly = img[cl_i[0],cl_i[1],:]
 valAll_poly = np.concatenate([val_poly[:, np.newaxis],valAll_poly],axis=1)
 valAll_polyM = ma.array(valAll_poly,mask=[valAll_poly==-10000])
 cluster_i = np.unique(val_poly)

 dist = pd.DataFrame(columns=['cl_name','distNDVI'])
 valAll_poly_d = pd.DataFrame(valAll_polyM,columns=ndvi_col)

 for ii in range(1,max(cluster_i)+1):
 for j in reversed(range(1,max(cluster_i)+1)):
 if j<=ii:
 continue
 else:
 dist1 = pd.DataFrame({'cl_name': [str(ii)+','+str(j)]})
 #print(str(i)+','+str(j))
 #print(v_count[ii])
 if (v_count[ii]>NPixTHRNDVI) & (v_count[j]>NPixTHRNDVI):
 dist1['distNDVI'] = np.absolute(np.nanmean(m_polydG[m_polydG.label==ii]) -
np.nanmean(m_polydG[m_polydG.label==j]))
 else:
 dist1['distNDVI'] = 0
 dist = pd.concat([dist,dist1])

 df_cl1['Compact'] = np.nanmean(val_Connect)
 df_cl1['CompactA'] = (np.nanmean(val_Connect)/np.log(lpis_csv[area][i]))

 df_cl1['Hete'] = 1
 df_cl1['distNDVI'] = round(np.nanmax(dist['distNDVI'])/1000,5)
 else:
 dist = pd.DataFrame()
 df_cl1['Hete'] = 0
 df_cl1['distNDVI'] = 0
 df_cl = pd.concat([df_cl,df_cl1])
df_cl = df_cl.fillna(0)

4.1.3 Statistics extraction at the parcel-level for S1 analysis

This step is similar to the statistics extraction at the parcel-level for S2 except the computation of the
distNDVI which required the import of NDVI raster.

The following raster files related to the period of analysis P and the tile (ti) are imported in the
environment:

• decl_{site}_{year}_{ti}_S1.tif is imported as imR;
• file_out_post is imported as Cluster_extract;
• file_out_post2 is imported as Cluster_connectE.

A stack (imgC) is done with these three raster files (which should all have the same size (x, y)).

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 27 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Then a loop on each parcel (i) of the tile (ti) is performed to extract a set of statistics using a Python
loop (Algorithm 4-2) which runs as follows.

First, the position of the parcel i is identified using the imgR in the imgC stack and stored into cl_i. Using
this position (cl_i), it extracts the values from the cluster using the cluster_extact in imgC and stores it
into val_poly variable. This step allows calculating the number of pixels in each cluster c (cl_{c}) and
its related percentage (clP_{c}).

Then, if the maximum percentage of a cluster is lower than PerHetero (0.9), the parcel is flagged as
potentially heterogeneous (Hete = 1) and is further analysed. Otherwise, Hete is set to 0 and the analysis
stops there; the script moves to the next parcel.

In case of Hete = 1, the script continues as such:

 It extracts the values of the connectivity (from the stack imgC) at the position of the parcel
(cl_i) and computes the mean of the connectivity values associated to all pixels (ouput
Compact).

 Another variable generated is the CompactA that takes the mean of the connectivity values
associated to all pixels normalized by the log of the area of the parcel.

Algorithm 4-3. Extraction cluster values python loop
df_cl = pd.DataFrame(columns=['NewID','Hete'])
for i in tqdm(newid):
 cl_i = np.where(imgC[0] == i)
 val_poly = imgC[1,cl_i[0],cl_i[1]]
 val_poly1 = val_poly[val_poly!=0]
 v_countP = np.bincount(val_poly1)/len(val_poly1)
 v_count = np.bincount(val_poly1)
 df_cl1 = pd.DataFrame({'NewID':[i]})
 if sum(val_poly)>0 :
 for c in range(1,max(val_poly1)+1):
 df_cl1[f'clP_{c}'] = v_countP[c]
 df_cl1[f'cl_{c}'] = v_count[c]
 if len(v_count) == 0:
 df_cl1['Hete'] = 0
 elif max(v_countP) < PerHetero:
 val_Connect = imgC[2,cl_i[0],cl_i[1]]
 df_cl1['Compact'] = np.nanmean(val_Connect)
 df_cl1['CompactA'] = np.nanmean(val_Connect)/ np.log(lpis_csv[area][i]))
 df_cl1['Hete'] = 1
 else:
 dist = pd.DataFrame()
 df_cl1['Hete'] = 0
 df_cl = pd.concat([df_cl,df_cl1])
df_cl = df_cl.fillna(0)

4.2 Parcel-level markers
According to the values of the statistics extracted in section 4.1, heterogeneity markers can be
determined for each period P.

4.2.1 Parameters of the markers

Table 4-3 lists the parameters and their default values used to determine the markers observed for each
period P.

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 28 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Table 4-3. Parameters of heterogeneity markers

Parameters
names Role

Default
value
[format]

PerHetero
Pixels percentage corresponding to the biggest cluster in the parcel. If the
biggest cluster is above PerHetero, the parcel is considered as
homogeneous. Already used in the previous section (4.1.1)

0.9 [float]

NPixClS2 Minimum number of S2 pixels needed to take into consideration the
cluster 20 [int]

NPixClS1 Minimum number of S1 pixels needed to take into consideration the
cluster 20 [int]

ThrNDVIdist Threshold of the NDVI distance calculated between clusters 0.17 [float]

ThrCompactS2
Threshold of the compactness in the S2 analysis

(varies according to the radiusC which has a default value = 3)
3 [int]

ThrCompactS1
Threshold of the compactness in the S1 analysis
(varies according to the radiusC which has a default value = 3)

3 [int]

4.2.2 Markers of heterogeneity

Heterogeneity markers are defined for S2 and S1 separately. They are presented in Table 4-4
Table 4-4. Heterogeneity markers for S2 and S1 calculated over each period P

Marker S2 Description Possible Value

M1 More than one big cluster (>PerHetero % of the parcel) with S2 1 or 0 or NA

M2 At least 2 clusters with more than NPixClS2 1 or 0 or NA

M3 DistNDVI > ThrdNDVIdist 1 or 0 or NA

M4 Compact S2 < ThrdCompactS2 1 or 0 or NA

Marker S1 Description Possible Value

M5 More than one big cluster (>PerHetero % of the parcel) with S1 1 or 0 or NA

M6 At least 2 clusters with more than NPixClS1 1 or 0 or NA

M7 Compact S1 < ThrdCompactS1 1 or 0 or NA

The S2 markers are computed using the output of the extraction at the parcel level (see section 4.1.2),
which is done as follows:

- M1 is just another name for Hete output from S2. The marker is set as 1 when the maximum of
the clP_{c} is above PerHetero and 0 otherwise.

- M2 is set as 1 when the number of clusters with more than NPixClS2 pixels is bigger than 2 and
if M1 = 1. It’s done using the cl_{c} outputs from S2. The value is 0 otherwise.

- M3 is set as 1 when the distNDVI (output from S2) is above the ThrNDVIdist and 0 otherwise.
The value of M3 can only be 1 if M1 is 1 since the distNDVI is calculated only when M1 = 1.

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 29 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

- M4 is set as 1 when the CompactA output from S2 is above the ThrdCompactS2 and 0
otherwise. The value of M4 can only be 1 if M1 is 1 since the Compact is calculated only when
M1 = 1.

The S1 markers are computed using the output of the extraction at the parcel level (see section 4.1.3),
which is done as follows:

- M5 is just another name for Hete output of S1. The marker is set as 1 when the maximum of
the clP_{c} is above PerHetero and 0 otherwise.

- M6 is set as 1 when number of clusters with more than NPixClS1 pixels is bigger than 2 and if
M5 = 1. It’s done using the cl_{c} outputs from S1. The value is 0 otherwise.

- M7 is set as 1 when the Compact output from S1 is above the ThrdCompactS1 and 0 otherwise.
The value of M7 can only be 1 if M5 is 1 since the Compact is calculated only when M1 = 1.

Algorithm 4-4. Heterogeneity markers generation for S2
 if sum(v_count>NPixClS2) >= 2:
 df_cl1['M2'] = 1
 else:
 df_cl1['M2'] = 0

df_cl.loc[df_cl['Hete'].isin((0,3)),'M1'] = 0
df_cl.loc[df_cl['Hete'] == 1,'M1'] = 1
df_cl.loc[df_cl['distNDVI'] > ThrdNDVIdist,'M3'] = 1
df_cl.loc[df_cl['CompactA'] > ThrdCompactS2,'M4'] = 1

Algorithm 4-5. Heterogeneity markers generation for S1
 if sum(v_count>NPixClS1) >= 2:
 df_cl1['M6'] = 1
 else:
 df_cl1['M6'] = 0

df_cl.loc[df_cl['Hete'].isin((0,3)),'M5'] = 0
df_cl.loc[df_cl['Hete'] == 1,'M5'] = 1
df_cl.loc[df_cl['CompactA'] > ThrdCompactS1,'M7'] = 1

4.2.3 Outputs of the Parcel-level extraction and markers

For each period p, an output is generated for the S2 analys and:

- is a ‘.csv’ named L4D_HeteS2_{site}_{year}_{p}.csv
- contains the same number of rows as the number of parcels in the declaration dataset.
- contains the columns described in Table 4-5

Table 4-5. Columns of the parcel-level extraction and markers results for the period p in the S2 analysis

Column
name Role [format]

NewID ID of the parcel in the Sen4CAP system [int]

Hete First heterogeneity flag. It can take two values. 0 if the parcel includes one cluster
made of more than 90% of the pixels and to 1 otherwise.

0 or 1
[int]

clP_{c} the number of pixels in the cluster (c) [int]

cl_{c} the percentage of pixels in the cluster (c) with regard to the total number of pixels
within the parcel (i) [float]

distNDVI maximum distance of NDVI between 2 clusters [float]

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 30 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Compact the averaged connectivity at the parcel-level [float]

CompactA the averaged connectivity at the parcel-level normalized by the surface of the
parcel [float]

M1 Value of the marker 1 [int]

M2 Value of the marker 2 [int]

M3 Value of the marker 3 [int]

M4 Value of the marker 4 [int]

HoleS2 Number of images in the period p for the parcel that is fully covered by NA
(maximum is n_im_p); [int]

HoleS2Part Number of images in the period p for the parcel that is partially covered by NA
(maximum is n_im_p). [int]

For each period p, an output is generated for the S1 analysis and:

- is a ‘.csv’ named L4D_HeteS1_{site}_{year}_{p}.csv
- contains the same number of rows as the number of parcels in the declaration dataset.
- contains the columns described in Table 4-6

Table 4-6. Columns of the parcel-level extraction and markers results for the period p in the S1 analysis

Column
name Role [format]

NewID ID of the parcel in the Sen4CAP system [int]

Hete First heterogeneity flag. It can take two values: 0 if the parcel includes one cluster
made of more than 90% of the pixels, and 1 otherwise

0 or 1
[int]

clP_{c} the number of pixels in the cluster (c) [int]

cl_{c} the percentage of pixels in the cluster (c) with regard to the total number of pixels
within the parcel (i) [float]

Compact the averaged connectivity at the parcel-level [float]

CompactA the averaged connectivity at the parcel-level normalized by the surface of the
parcel [float]

M5 Value of the marker 5 [int]

M6 Value of the marker 6 [int]

M7 Value of the marker 7 [int]

4.3 Heteregeneity decision rules
The analysis of the period for decision on the heterogeneity should be as understandable as possible. We
strongly recommend to code this part as a Jupyther notebook.

Decision about the heterogeneity is taken over a longer period PM (corresponding to at least 3 periods
P), as explained in Figure 1-2.

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 31 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

The idea is to loop over each period p and analyse the markers in this p period and in the PM-1 periods
after it. According to the value of the sum of all the markers in this PM period, a confidence level is
given for the p period.

4.3.1 Period analysis for decision

Algorithm 4-6 requires inputs to produce a confidence level for heterogeneity detection based on an
analysis conducted during each PM period. These inputs are described in Table 4-7

Table 4-7. Inputs of the period analysis for the decision algorithm

Inputs Role Default value
[format]

site Site of the sen4cap system [string]

year Year related to the season YYYY [int]

decl_{site}_{year} Parcel declaration after the preparation by the Sen4CAP
system [.csv]

d the number of periods for the analysis at the PM period [int]

L4D_HeteS2_{site}_{y
ear}_{p}

Results of the Parcel extraction and markers generation for
S2 for the all the period p of the monitoring period. [.csv]

All the results from the parcel extraction and markers generation are concatenated into a single table
called dt_all containing only the columns NewID, M1 to M5, HoleS2 and HoleS2Part and the period
number.

l_marker is the number of markers (i.e. 4 when using S2). A loop over each parcel (i) is performed with
the following steps:

1. Retrieving the markers in the dt_all of the parcel i and store it into dt_i
2. The HoleS2_All and the HoleS2_AllPart are respectively the sum of the HoleS2 for all the

results and the sum of the HoleS2Part for all the results.
3. A loop over each PM is then performed:

a. The pm is the period from p to p + d
b. The markers from this pm period are selected and added together in the sum_markers.

And the M_sum is a list containing the sum of each marker separately.
c. The C_INDEX can take the following values and the PM start value is set:

i. STRONG if the sum_markers is equal to l_marker*d (i.e. all the markers are
true for the PM period)

ii. MODERATE if the minium of M_sum is greater than d-2 and maximum of
M_sum is d (i.e. one marker at least is verified for the pm period and the other
markers should be verify at least 1 time (when d=3) in the pm period)

iii. WEAK if only one of the markers is 0 and and maximum of M_sum is d (given
here by the formula len([1 for x in M_sum if x > 0]) >= l_marker-1)

iv. POOR if the sum_markers is greater than 2*d (i.e. at least half of the markers
are 1).

v. NA in every other situation.
The C_INDEX will keep its maximum value until it is improved.

The output also contains the LC and the ShapeInd of the parcel analysed.

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 32 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Algorithm 4-6. Period analysis for decision on the heterogeneity using only S2 results at the parcel
dt_i = dt_all.loc[dt_all['NewID']==i]
C_INDEX = 'NO'
P_Hete_L = np.nan
M1 = np.nan
M2 = np.nan
M3 = np.nan
M4 = np.nan
HoleS2_All = sum(dt_i['HoleS2'])
HoleS2_AllPart = sum(dt_i['HoleS2Part'])
#print(i)

pm_period_start = min(period_l)
pm_period_end = max(f['period'])-d

for p in range(pm_period_start,pm_period_end+1):
 pm = range(p,p+d)
 dt_i_m = dt_i.loc[dt_i['period'].isin(pm),markerL]
 sum_markers = dt_i_m.values.sum()
 M_sum = [sum(dt_i_m.iloc[:,0]),sum(dt_i_m.iloc[:,1]),sum(dt_i_m.iloc[:,2]),sum(dt_i_m.iloc[:,3])]
 if sum_markers == l_marker*d :
 #print('strong')
 #print(i)
 C_INDEX = 'STRONG'
 P_Hete_L = p
 M1 = M_sum[0]
 M2 = M_sum[1]
 M3 = M_sum[2]
 M4 = M_sum[3]

 elif (min(M_sum)>=(d-2)) & (max(M_sum)==d) & (C_INDEX!= 'STRONG'):
 C_INDEX = 'MODERATE'
 P_Hete_L = p
 M1 = M_sum[0]
 M2 = M_sum[1]
 M3 = M_sum[2]
 M4 = M_sum[3]

 elif (len([1 for x in M_sum if x > 0]) >= l_marker-1) & (max(M_sum)==d) & (C_INDEX not in
('STRONG','MODERATE')):
 C_INDEX = 'WEAK'
 P_Hete_L = p
 M1 = M_sum[0]
 M2 = M_sum[1]
 M3 = M_sum[2]
 M4 = M_sum[3]

 elif ((sum_markers >= 2*d) & (C_INDEX not in ('STRONG','MODERATE','WEAK'))):
 #print(f'markers sum : {dt_i_m.values.sum()} and c_index previous : {c_ind}')
 C_INDEX = 'POOR'
 P_Hete_L = p
 M1 = M_sum[0]
 M2 = M_sum[1]
 M3 = M_sum[2]
 M4 = M_sum[3]

dt_out = {
 'NewID' : i,
 'LC': lpis_csv.lc[i],
 'ShapeInd': lpis_csv.ShapeInd[i],
 'M1' : M1,
 'M2' : M2,
 'M3' : M3,
 'M4' : M4,
 'P_Hete_L' : P_Hete_L,
 'C_INDEX' : C_INDEX,
 'HoleS2' : HoleS2_All,
 'HoleS2_PM' : HoleS2_AllPart}

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 33 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

4.3.2 Output of the decision rules

The final result is a .csv table that gives an indication on the heterogeneity at the parcel level and on
when this heterogeneity might have happened. Two others variables (HoleS2_All and HoleS2_AllPart)
inform on the quality of the data used in the cluster and so might have an impact on the quality of the
final decision.

At this stage, the decision is only based on S2.

This table is called L4D_HeteDecisionS2_{site}_{year}.csv and contains the columns described in
Table 4-8

Table 4-8. Columns of period analysis for decision making.

Column
name Role [format]

NewID ID of the parcel in the Sen4CAP system [int]

LC Land Cover of the parcel as described in Table 2-4 [int]

ShapeInd Shape index of the parcel [float]

M1 Sum of the marker 1 for the d periods after the P_Hete_L (i.e. Sum of M1 used
for the C_INDEX computation) [int]

M2 Sum of the marker 2 for the d periods after the P_Hete_L (i.e. Sum of M2 used
for the C_INDEX computation) [int]

M3 Sum of the marker 3 for the d periods after the P_Hete_L (i.e. Sum of M3 used
for the C_INDEX computation) [int]

M4 Sum of the marker 4 for the d periods after the P_Hete_L (i.e. Sum of M4 used
for the C_INDEX computation) [int]

P_Hete_L Period p where the maximum C_INDEX is observed [int]

C_INDEX
Confidence level in the Heterogeneity detection for the period PM (d periods
after the period p). It can take 5 values: ‘STRONG’, ‘MODERATE’, ’WEAK’, ’POOR’
and ‘NA’

[string]

HoleS2_All Number of missing data on the full parcel for the monitoring period [int]

HoleS2_AllPart Number of missing data on the part of the parcel for the monitoring period [int]

Ref Sen4CAP_DDF-ATBD-Hete_v1.1

Issue Page Date

1.1 34 30/03/2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

5. Output

This section distinguishes 3 kinds of outputs, coming from the clustering component (section 3), from
the statistics extraction and markers definition at the parcel-level (sections 4.1 and 4.2) and from the
decision rules (section 4.3).

5.1 Output of the clustering
For period P and for each S2 or S1 tile (S1 tile corresponding to S1 data clipped over the S2 tile extent),
four products are generated:

1) Raster of clusters without isolated pixels from the S2 clustering named
L4D_ClS2_{site}_{ti}_{p}.tif;

2) Raster of cluster without isolated pixels from the of S1 clustering named
L4D_ClS1_{site}_{ti}_{p}.tif;

3) Raster of connectivity (considered as a proxy of the compactness of the cluster analysed)
without isolated pixels from the S2 clustering named L4D_ClS2_{site}_{ti}_{p}_Connect.tif;

4) Raster of connectivity (considered as a proxy of the compactness of the cluster analysed)
without isolated pixels from the S1 clustering named L4D_ClS1_{site}_{ti}_{p}_Connect.tif.

5.2 Output of the parcel level extraction
For each period P, an output gives the results of the extraction and the marker generation at the parcel
level based on the clustering outputs. This is done independently for S1 and S2.

- The L4D_HeteS2_{site}_{year}_{p}.csv table contains the columns as described in Table 4-5
- The L4D_HeteS1_{site}_{year}_{p}.csv table contains the columns as described in Table 4-6

5.3 Output of the decision rules
The final output of this processor is another .csv table that gives the confidence level on the detection
together with the markers agreggated for the decision making.

This table is called L4D_HeteDecisionS2_{site}_{year}.csv and contains the columns described in
Table 4-8.

	1. Logical model – overview of the processor
	2. Input data preparation
	2.1 Subsidy application layer
	2.1.1 Standardized subsidy application layer with quality flags
	2.1.2 Parcels raster layers
	2.1.3 Crop code LUT

	2.2 Optical data
	2.3 SAR data
	2.3.1 Mosaicking and formatting
	2.3.2 Gap-filling consideration

	3. Clustering algorithm
	3.1 Inputs and preparation of clustering
	3.1.1 Input data
	3.1.2 Import
	3.1.3 Masking non-crop and no-data values

	3.2 Clustering
	3.2.1 kmeans_missing function
	3.2.2 Image reconstruction and save temporary cluster raster

	3.3 Spatial smoothing
	3.4 Spatial connectivity

	4. Parcel-level analysis
	4.1 Parcel-level statistics extraction
	4.1.1 Inputs of the parcel values extraction
	4.1.2 Statistics extraction at the parcel-level for S2 analysis
	4.1.3 Statistics extraction at the parcel-level for S1 analysis

	4.2 Parcel-level markers
	4.2.1 Parameters of the markers
	4.2.2 Markers of heterogeneity
	4.2.3 Outputs of the Parcel-level extraction and markers

	4.3 Heteregeneity decision rules
	4.3.1 Period analysis for decision
	4.3.2 Output of the decision rules

	5. Output
	5.1 Output of the clustering
	5.2 Output of the parcel level extraction
	5.3 Output of the decision rules

