

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 1 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Sen4CAP - Sentinels for Common
Agricultural Policy

Design Justification File
ATBD for L4A crop type mapping

Milestone Milestone 1

Authors Nicolas BELLEMANS, Sophie BONTEMPS, Pierre DEFOURNY,
Laurentiu NICOLA, Philippe MALCORPS

Distribution ESA - Benjamin KOETZ

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 2 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

This page is intentionally left blank

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 3 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Table of recorded changes

Version Date Reason

v1.0 First version

v1.1 11/04/2019 Update to fit with new developments in the processor, mainly
concerning the object classification steps

v1.2 23/07/2019 Implementation of the crop diversification use case in the ATBD

v1.3 01/04/2021 End of project - final version

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 4 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Table of contents
1. Logical model – overview of the system .. 10

2. Data preparation ... 12

2.1 Subsidy application layer ... 12

2.1.1 Input data ... 12

2.1.2 L4A crop code and crop diversification information .. 15

2.2 Optical data .. 16

2.3 SAR data .. 16

2.3.1 Mosaicking and formatting.. 16

2.3.2 Gap-filling consideration ... 21

3. Feature extraction ... 22

3.1 Optical data .. 22

3.1.1 Feature extraction .. 22

3.1.2 Parcel level statistics extraction... 23

3.2 SAR data .. 24

3.2.1 Ratio VV/VH ... 24

3.2.2 Feature concatenation .. 24

3.2.3 Temporal features .. 26

3.2.4 Parcel level statistics extraction... 31

4. Object classification ... 32

4.1 Format object feature statistics .. 32

4.1.1 Import object feature statistics: from ‘line raster’ to csv ... 32

4.1.2 Features concatenation .. 32

4.2 Select parcels for training, classification and validation .. 33

4.2.1 Non-assessed parcels ... 35

4.2.2 Parcels used for calibration and validation .. 35

4.3 Apply SMOTE algorithm to synthetically over-sample the minority classes 37

4.4 Train the Random Forest model... 38

4.5 Classify and format the classification output table .. 39

4.6 Update the subsidy application layer with the classification results 40

5. Validation ... 41

6. Crop diversification use case .. 43

6.1 Context ... 43

6.2 Preparation ... 45

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 5 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

6.2.1 Standardized subsidy application layer with quality flags and results of the classification
 45

6.2.2 Crop code LUT .. 47

6.3 Process ... 47

6.3.1 Parameters definition ... 47

6.3.2 Conformity assessment at the parcel level .. 48

6.3.3 Summarized factors by holding ... 50

6.3.4 Category assessment at the holding level .. 52

6.3.5 Crop diversification assessment at the holding level ... 54

6.4 Output .. 57

7. Output ... 59

7.1 Results of the crop type mapping ... 59

7.2 Results of the crop diversification assessment ... 59

7.3 Validation results ... 60

7.4 Classification related data .. 61

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 6 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

List of figures

Figure 1-1. General workflow of the L4A crop type mapping production ... 11
Figure 2-1. Selection of the used S2 pixels by parcel ... 13
Figure 2-2. Workflow of the temporal resampling of the optical data ... 16
Figure 2-3.Workflow of the mosaicking step to produce weekly mosaics of S1 images 16
Figure 3-1. Workflow of the features extraction of the optical data .. 22
Figure 3-2.Workflow of the parcel level statistics extraction .. 23
Figure 3-3. Workflow of the SAR data feature extraction steps .. 24
Figure 3-4. (a) Exemple of monthly coherence over a Winter Wheat field in Netherlands (b) Mean of the
coherence value of March 2017 over Netherlands ... 28
Figure 3-5.Workflow of the parcel level statistics extraction .. 31
Figure 4-1. Example of csv containing the unique ID and the declared crop type oof the parcel along with the
optical features statistic per parcel ... 32
Figure 4-2. Specific workflow for the selection of the parcels used by the classification scheme. The by-default
values are the following ones: LC_monitored = [1,2,3,4], S2pixMIN = 3, S1pixMIN = 1, PaMIN = 30, S2pixBEST =
10, PaCalibH = 4000, PaCalibL = 1333, Sample_ratioH = 0.25, Sample_ratioL = 0.75, smote_size = 1000. 33
Figure 4-3. Non-assessed parcels by the classification scheme. The by-default values are the following ones:
LC_monitored = [1,2,3,4], S2pixMIN = 3, S1pixMIN = 1, PaMIN = 30. ... 35
Figure 4-4. Parcels classified and used for calibration and validation. The by-default values are the following
ones: S2pixBEST = 10, PaCalibH = 4000, PaCalibL = 1333, Sample_ratioH = 0.25, Sample_ratioL = 0.75,
smote_size = 1000. .. 36
Figure 6-1 Crop diversification regulations from the Technical guidance for the On-The-Spot checks of Crop
Diversification [RD.7] considered in the Sen4CAP project and correspondence with the Sen4CAP crop
diversification categories .. 44

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 7 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

List of tables

Table 2-1. Standardized subsidy application layer with quality flags ... 12
Table 2-2. Content of the standardized subsidy application layer with quality flags .. 12
Table 2-3. Parcels raster layers ... 14
Table 2-4. Content of the L4A crop code LUT .. 14
Table 2-5. Specific variables for the mocaicking and formatting of the S1 time series ... 17
Table 3-1. Specific input variables for the optical data features extraction .. 22
Table 3-2. Specific input variables for the extraction of feature statistics per parcel ... 23
Table 3-3. Specific variables for the computation of the SAR ratio ... 24
Table 3-4. Specific variables for the feature concatenation of the SAR time series data 25
Table 3-5. Specific variables for the temporal features computation based on the S1 time series....................... 28
Table 3-6. Specific input variables for the extraction of feature statistics by parcel from the S1 time series 31
Table 4-1. Specific variables for the selection of parcels for classification, training and validation 34
Table 4-2. Specific input variables for the SMOTE algorithm .. 38
Table 4-3. Specific input variables for the model Random Forest ... 38
Table 4-4. Specific variables for the RF model application for S2 and S1 time series classification 39
Table 4-5. Output attribute fields with the results of the RF classification (Predict_classif.csv) 40
Table 5-1. Specific variables for the validation ... 41
Table 6-1 Crop diversification categories considered in the Sen4CAP crop diversification use cases 45
Table 6-2. Content of the csv file exported from the subsidy application layer .. 46
Table 6-3 Input variables of the crop diversification process .. 48
Table 6-4. Summarized factors by holding .. 50
Table 6-5. Crop diversification category assessment .. 52
Table 6-6. Crop diversification compliancy assessment .. 54
Table 6-7. Content of the crop diversification output crop_div.csv ... 57
Table 6-8. Content of the crop diversification output crop_div_holding.csv ... 58
Table 7-1. Content of the output shapefile export .. 59
Table 7-2. Content of the crop diversification output crop_div.csv ... 59
Table 7-3. Content of the crop diversification output crop_div_holding.csv ... 60

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 8 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

References

ID Title

RD.1 Inglada J. and Arias M. 2017, Sen2-Agri project, Design Definition File - Algorithm Therotical Basis
Document for L4 Crop type product

RD.2 Chawla N., Bowyer K., Hall L., Kegelmeyer W., 2002. SMOTE: synthetic minority over-sampling
technique, Journal of artificial intelligence research, 16, 321-357.

RD.3
Bunkhumpornpat C., Sinapiromsaran K., Lursinsap C.. 2009. Safe-level-smote: Safe-level-
synthetic minority over-sampling technique for handling the class imbalanced problem. Pacific-
Asia conference on knowledge discovery and data mining. 475-482.

RD.4 Breiman, L. Machine Learning (2001) 45: 5. https://doi.org/10.1023/A:1010933404324

RD.5 Sen4CAP Design Justification File: ATBD for Subsidy application layer Preparation (April 2019)

RD.6
Vajsova B., Fasbender DK, Wirnhardt C., Lemajic S., Astrand P.J., 2018, Addressing the small
parcels
issue (https://ec.europa.eu/jrc/sites/jrcsh/files/11-sifting_and_hhr.pdf)

RD.7 JRC (2015), Technical guidance for the On-The-Spot checks of Crop Diversification, DS-CDP-2015-
08, JRC96614

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 9 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

List of acronyms

Acronym Definition

ATBD Algorithm Theoretical Basis Document

GSAA GeoSpatial Aid Application

LPIS Land Parcel Identification System

LUT Look-Up Table

NDVI Normalized Difference Vegetation Index

NDWI Normalized Difference Water Index

PA Paying Agency

RF Random Forest

S1 Sentinel-1

S2 Sentinel-2

SAR Synthetic Aperture Radar

Sen2-Agri Sentinel-2 for Agriculture

SMOTE Synthetic Minority Over-Sampling Technique

SWIR Short-Wave Infrared

UTM Universal Transvere Mercator

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 10 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

1. Logical model – overview of the system
The developed object-based classification scheme relies on a Random Forest (RF) algorithm, run on
optical Sentinel-2 (S2) surface reflectance and Synthetic Aperture Radar (SAR) Sentinel-1 (S1) statistics
time series at the parcel level.

Figure 1-1 presents the general workflow of the crop type mapping processing chain. There are 5 main
components:

1. Data preparation
a. Declaration data
b. Optical data
c. SAR data

2. Features extraction
a. Optical data
b. SAR data

3. Object classification
a. Format object feature statistics
b. Select parcels for training, classification and validation
c. Apply SMOTE algorithm to synthetically over-sample the minority classes
d. Train the Random Forest model
e. Classify and format the classification output table

4. Output formating
5. Validation

Optical data preparation and optical features extraction modules were directly inherited from existing
modules in the ESA Sentinel-2 for Agriculture (Sen2-Agri) processing system.

The developed classification scheme has been designed to allow classifying an area covering multiple
tiles, meaning that a single classification model is used for an entire stratum instead of one by input tile.
This leads in more consistent results in similar eco-climatic environement, better classification results
and fewer resources usage than single tile model for multi-tile site.

In the following sections, the different steps are presented in details. For most of these steps, the specific
input and output variables, as well as the code or pseudo-code, are given.

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 11 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Figure 1-1. General workflow of the L4A crop type mapping production

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 12 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

2. Data preparation

2.1 Subsidy application layer
2.1.1 Input data

In order to ensure a certain level of consistency between the different Sen4CAP processors (L4A crop
type mapping, L4B grassland mowing detection and L4C agricultural practices monitoring), the
preparation of the subsidy application layer is performed prior to the execution of these processors. The
subsidy application layer preparation is described in a dedicated ATBD (RD.5). The outputs of the
subsidy application layer preparation that are used by the L4A crop type mapping processor are
described below.

2.1.1.1 Standardized subsidy application layer with quality flags

The standardized subsidy application layer with quality flags:

- is stored as a PostGIS layer in the PostgreSQL database of the system;
- is projected in national projection;
- has the following name: decl_{site_name}_{year};
- has the same number of rows (parcels) than the original subsidy application layer.

Table 2-1. Standardized subsidy application layer with quality flags

Output data Description Default value [format]

decl_{site_name}_{year} The standardized version of the subsidy
application layer with the quality flags:
geometry and spectral information

[PostGIS]

It contains the following attribute fields (fields in orange are already present in the original subsidy
application layer) (Table 2-2).

Table 2-2. Content of the standardized subsidy application layer with quality flags

Field name Role Default value
[format]

Ori attributes All the original attributes of the original delaration
dataset

[integer, float or
string]

ori_id Copy of the content of the attribute field defined by
the user with the parcel id

[string]

ori_hold Copy of the content of the attribute field defined by
the user with the holding id

[string]

ori_crop Copy of the content of the attribute field defined by
the user with the crop code

[input format: string
or integer]

NewID New sequential ID of the parcel [integer]

HoldID New sequential ID of the holdings [integer]

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 13 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

GeomValid Identify parcels for which no polygon exists in the
subsidy application layer or with a not valid geometry

[integer, binary]

Duplic Identify parcels that have the exact same geometry as
another

[integer, binary]

Area_meters Parcel area in the UTM projection (m²) [integer]

Overlap Identify parcels which overlaps with neighbouring
parcels

[integer, binary]

ShapeInd The crop type name [float]

S1pix Indicates the number of used S1 pixels in the parcel [integer]

S2pix Indicates the number of used S2 pixels in the parcel [integer]

2.1.1.2 Parcels raster layers

The parcels raster layers are the rasters that are produced for both data (S2 and S1) and by tile, with the
NewID as value. Only the pixels that have their centroid located in the parcels inner buffer layers of 5
m for S2 and 10 m for S1, have been assigned the NewID of the parcel as value (Figure 2-1). Only these
pixels will be used to extract the spectral values from the Sentinel-1 (S1) and Sentinel-2 (S2) data.

Figure 2-1. Selection of the used S2 pixels by parcel

These layers:

• are .tif files;
• are produced by S2 tile;
• are projected in the WGS 84 / UTM zone {x} corresponding to the UTM zone of the S2 tile;
• have a value = NewID of the parcels;
• have a resolution of 10m for S2 and 20m for S1.

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 14 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Table 2-3. Parcels raster layers

Output variable Role Default value
[format]

{country}_{year}_decl_{i}_S2
Raster of all the used S2 pixels by parcel
(value as NewID); {i} = name of the tile (ex.
31UFS)

[tif] (nr of tiles)

{country}_{year}_decl_{i}_S2
Raster of all the used S1 pixels by parcel
(value as NewID); {i} = name of the tile (ex.
31UFS)

[tif] (nr of tiles)

2.1.1.3 Crop code LUT

If the original subsidy application layer contain a large number of crop types, it considerably improves
the classification accuracy to group together the crop types that are by definition very similar or that has
a very similar phenology. It is done by defining a new crop code (CTnumL4A) with a new crop name
(CTL4A) in the crop code LUT.

In addition, to check the compliancy of the holdings regarding the crop diversification rules, a series of
information should be defined by crop type: the crop diversification class (CTnumDIV and CTDIV) and
whether or not it belongs to one or more of the categories Eligible Agricultural Area (EAA), Arable
Land (AL), Permanent grassland, Temporary grassland, Fallow land and Crop under water.

All this information is summarized in a csv file, the crop code Look-Up Table (LUT), which:

• is stored as a table in the PostgreSQL database of the system;
• is named: lut_{country}_{year};
• contains the following information (Table 2-4).

Table 2-4. Content of the L4A crop code LUT

Field name Role Default value [format]

Ori_crop The initial crop code from the subsidy application layer [integer or string]

CTnum The new crop type code (each Ori_crop being associated
to a unique CTnum)

[integer]

CT The name of the crop type in English [string]

LC

The main land cover class of the crop type:

o 0: other natural areas
o 1: annual crop
o 2: permanent crop
o 3: grassland
o 4: fallow land
o 5: greenhouse and nursery

[integer]

CTnumL4A The new crop type code resulting of the grouping of the
CTnum for the classification

[integer]

CTL4A The crop type name associated to CTnumL4A [string]

CTnumDIV The crop diversification class code [integer]

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 15 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

CTDIV The crop diversification class name [string]

EAA Eligble agricultural area: value 1 if the crop type belongs to
this category, value 0 otherwise

[integer, binary]

AL Arable Land: value 1 if the crop type belongs to this
category, value 0 otherwise

[integer, binary]

PGrass Permanent grassland: value 1 if the crop type belongs to
this category, value 0 otherwise

[integer, binary]

TGrass Temporary grassland: value 1 if the crop type belongs to
this category, value 0 otherwise

[integer, binary]

Fallow Fallow land: value 1 if the crop type belongs to this
category, value 0 otherwise

[integer, binary]

Cwater Crop under water: value 1 if the crop type belongs to this
category, value 0 otherwise

[integer, binary]

2.1.2 L4A crop code and crop diversification information

This step joins the information contained in the L4A crop type LUT to the standardized subsidy
application layer with quality flags. The following fields, for which the definition is given in Table 2-4,
are added to the attribute table:

• CTnumL4A;
• CTL4A;
• CTnumDIV;
• CTDIV;
• EAA;
• AL;
• PGrass;
• TGrass;
• Fallow;
• Cwater.

The join is made using the ori_crop field from the stansardized subsidy application layer with quality
flags and the Ori_crop field of the crop code LUT.

The join shall keep all the original parcels of the subsidy application layer (same number of rows as the
original subsidy application layer).

The standardized subsidy application layer with quality flags is updated with the following PostGIS
query (Algorithm 2-1):

Algorithm 2-1. Update of the subsidy application layer with related quality flags
update declaration_dataset

set "CTnumL4A" = L4A_lut.ctnuml4a,

 "CTL4A" = L4A_lut.ctl4a,

 "CTnumDIV" = L4A_lut.ctnumdiv,

 "CTDIV" = L4A_lut.ctdiv,

 "EAA" = L4A_lut.eaa,

 "AL" = L4A_lut.al,

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 16 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 "PGrass" = L4A_lut.pgrass,

 "TGrass" = L4A_lut.tgrass,

 "Fallow" = L4A_lut.fallow,

 "Cwater" = L4A_lut.cwater,

from L4A_lut

where L4A_lut.Ori_crop = subsidy_application_layer.ori_crop;

2.2 Optical data
The optical data preparation step is directly inherited from the Sen2-Agri system. It corresponds to a
temporal resampling and a gapfilling through linear interpolation of valid data (Figure 2-2).

Figure 2-2. Workflow of the temporal resampling of the optical data

As stated in the RD.1, the objective of the temporal resampling is to generate a reflectance image time
series which is gap-filled with respect to missing data and temporally resampled on a regular 10-day
grid. Missing data are refered to as the data masked as cloud, cloud shadow and saturated pixels. The
10-day period of the resampling was chosen instead of the 5-day to avoid an over-fitting of the RF
classifier that can be easily caused by using very correlated data.

For the implementation details, please refer to the RD.1.

Within the Sen2-Agri system, this step is coded in the form of the OTB application and is merged
together with the feature extraction step. The input and output variables are discussed in the section
3.1.1.

2.3 SAR data
2.3.1 Mosaicking and formatting

The method is designed to look for all the S1 images overlapping a given S2 tile within a given period.
It produces time series of S1 mosaics combining images acquired within 6-day period. This step
produces a temporally regular time series of mosaics fully covered by valid pixel (Figure 2-3). For
classification purposes, the mosaics shall not be covered by no data pixels.

Figure 2-3.Workflow of the mosaicking step to produce weekly mosaics of S1 images

The mosaics are formated to match the format (resolution, extent and projection) of the S2 image given
as input.

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 17 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

The weekly mosaic are generated for each calendar week; this way, the mosaics are independent of the
season duration.

The mosaicking step is performed independently for the two passes – ascending and descending – and
for the two polarimetry – VV and VH – respectively for the coherence and the backscattering. It
therefore results in 8 independent time series of

1. Coherence – Ascending – VV
2. Coherence – Ascending – VH
3. Coherence – Descending – VV
4. Coherence – Descending – VH
5. Backscattering intensity – Ascending – VV
6. Backscattering intensity – Ascending – VH
7. Backscattering intensity – Descending – VV
8. Backscattering intensity – Descending – VH

This operation can be performed using the python script s2TileExtent_to_s1Mosaic.py. The needed
inputs are presented in Table 2-5 and the script is presented in Algorithm 2-2.

Table 2-5. Specific variables for the mocaicking and formatting of the S1 time series

Input variable Role Default value
[format]

S2_ref Reference S2 raster [character]

S1_dir S1 directory [character]

scratch_dir Temporary folder to write the s1 tiles warped

start_date Start date of the temporal extent [YYYYMMDD]

end_date End date of the temporal extent [YYYYMMDD]

temporal_step
Temporal extent over which the code performs the mean
composite i.e. the first composite will be from -start to
"start"+"step" included.

7 [DD]

pattern

Space separated list of coma separated patterns that will be
considered separately for the composite. Multiple entries
allowed NB: only files matching at least one of the pattern will
be considered. If you do not want to separate different patterns
put at least one pattern to get correct tif in the s1 folders.

VV,VH asc,desc

min Minimal value for the s1 data. Any smaller value is considered
as nodata [numeric]

max Maximal value for the s1 data. Any higher value is considered as
nodata. [numeric]

Output variable Role Default value
[format]

output_dir Output folder to write the S1 mean composties. Absolute path
required fid [character]

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 18 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

The script is performing the following operations:

(1) Get extent of the S2 tile given as input by S2_ref;
(2) Get list of overlapping S1 files in the S1_dir;
(3) Filter with the pattern;
(4) Filter with the start_date and end_date;
(5) Warp each selected S1 images to the S2 tile format (extent and resolution);
(6) Mean compositing over iterative period (expressed in number of days given by the

temporal_step parameter).
Algorithm 2-2. Mosaicking and formatting of the S1 times series (s2TileExtent_to_s1Mosaic.py)

import os
import argparse
import argparse, os, sys, subprocess
from osgeo import gdal, osr, ogr
from shapely import geometry
from datetime import datetime, timedelta

parser = argparse.ArgumentParser(description='Take an S2 image in input and a temporal extent to return
a mosaic of the S1 images overlaping with the S2 spatial extent using mean composite. NB: S1 images must
be in same projection and aligned.')
parser.add_argument('-i', help='Input s2 tile', required=True)
parser.add_argument('-s1', help='Input folder with the S1 tiles', required=True)
parser.add_argument('-o', help='Output folder to write the S1 mean composties. Absolute path required',
required=True)
parser.add_argument('-temp', default='/scratch/', help='Temporary folder to write the s1 tiles warped.')
parser.add_argument('-start', default='20170101', type=str, help='Start date of the temporal extent.
Format YYYYMMDD.')
parser.add_argument('-end', default='20171231', type=str, help='End date of the temporal extent. Format
YYYYMMDD.')
parser.add_argument('-step', default=5, type=float, help='Temporal extent over which the code performs
the mean composite i.e. the first composite will be from -start to "start"+"step" included.')
parser.add_argument('-p', "--patternToSeparate", nargs='*', default=['VV,VH', 'asc,desc',
'cohe,slc_coreg_amp_calib'], help='Space separated list of coma separated patterns that will be
considered separately for the composite. Multiple entries allowed e.g. -p VV,VH asc,desc . NB: only files
matching at least one of the pattern will be considered. If you do not want to separate different patterns
put at least one pattern to get correct tif in the s1 folders. e.g. -p patternInS1productName. Warning:
avoid all special characters like slashes!')
parser.add_argument('-min', default=0, type=float, help='Minimal value for the s1 data. Any smaller value
is considered as nodata.')
parser.add_argument('-max', default=100, type=float, help='Maximal value for the s1 data. Any higher
value is considered as nodata.')
parser.add_argument('-v', help='Verbose version', action='store_true')

args = parser.parse_args()

patternToSeparate = [item.split(',') for item in args.patternToSeparate]
print(patternToSeparate)

def GetExtent(gt, cols, rows):
 ''' Return list of corner coordinates from a geotransform

 @type gt: C{tuple/list}
 @param gt: geotransform
 @type cols: C{int}
 @param cols: number of columns in the dataset
 @type rows: C{int}
 @param rows: number of rows in the dataset
 @rtype: C{[float,...,float]}
 @return: coordinates of each corner
 '''
 ext=[]
 xarr=[0,cols]
 yarr=[0,rows]

 for px in xarr:

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 19 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 for py in yarr:
 x=gt[0]+(px*gt[1])+(py*gt[2])
 y=gt[3]+(px*gt[4])+(py*gt[5])
 ext.append([x,y])
 yarr.reverse()
 return ext

def ReprojectCoords(coords, src_srs, tgt_srs):
 ''' Reproject a list of x,y coordinates.

 @type geom: C{tuple/list}
 @param geom: List of [[x,y],...[x,y]] coordinates
 @type src_srs: C{osr.SpatialReference}
 @param src_srs: OSR SpatialReference object
 @type tgt_srs: C{osr.SpatialReference}
 @param tgt_srs: OSR SpatialReference object
 @rtype: C{tuple/list}
 @return: List of transformed [[x,y],...[x,y]] coordinates
 '''
 trans_coords=[]
 transform = osr.CoordinateTransformation(src_srs, tgt_srs)
 for x,y in coords:
 x,y,z = transform.TransformPoint(x,y)
 trans_coords.append([x,y])
 return trans_coords

def getListOfOverlappingFiles(s2_tile_path, s1_tile_path_list):
 s1_tile_overlapping_list_to_return = []
 s2_tile_datasource = gdal.Open(s2_tile_path)
 s2_srs = osr.SpatialReference()
 s2_proj = s2_tile_datasource.GetProjection()
 s2_srs.ImportFromWkt(s2_proj)
 s2_extent = GetExtent(s2_tile_datasource.GetGeoTransform(), s2_tile_datasource.RasterXSize,
s2_tile_datasource.RasterYSize)
 s2_extent.append(s2_extent[0])
 s2_pol = geometry.Polygon(s2_extent)
 for s1_tile_path in s1_tile_path_list:
 s1_tile_datasource = gdal.Open(s1_tile_path)
 s1_srs = osr.SpatialReference()
 s1_proj = s1_tile_datasource.GetProjection()
 s1_srs.ImportFromWkt(s1_proj)
 s1_extent = GetExtent(s1_tile_datasource.GetGeoTransform(), s1_tile_datasource.RasterXSize,
s1_tile_datasource.RasterYSize)
 s1_extent_reproj = None
 if not s1_proj == s2_proj:
 s1_extent_reproj = ReprojectCoords(s1_extent, s1_srs, s2_srs)
 else:
 s1_extent_reproj = s1_extent
 s1_extent_reproj.append(s1_extent_reproj[0])
 s1_pol = geometry.Polygon(s1_extent_reproj)
 if s1_pol.intersects(s2_pol):
 s1_tile_overlapping_list_to_return.append(s1_tile_path)
 return s1_tile_overlapping_list_to_return

s1tiles = [os.path.join(dirpath, filename) for dirpath, dirnames, filenames in os.walk(args.s1) for
filename in filenames if (os.path.splitext(filename)[1].lower() == ".tiff" or
os.path.splitext(filename)[1].lower() == ".tif")]
print("Found %d images (.tiff or .tif, capital letters allowed) in the s1 folder."%len(s1tiles))
s1tiles_with_match = []
for tile in s1tiles:
 hasMatches = []
 for pattern_set in patternToSeparate:
 for pattern in pattern_set:
 if pattern in tile:
 hasMatches.append(True)
 if len(hasMatches) > len(patternToSeparate):
 print("Error: the pattern you provided lead to double match for file %s."%tile)
 sys.exit()
 elif len(hasMatches) == len(patternToSeparate):

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 20 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 s1tiles_with_match.append(tile)

print("Found %d images matching the patterns in the s1 folder."%len(s1tiles_with_match))

s1_tile_overlapping_list = getListOfOverlappingFiles(args.i, s1tiles_with_match)

print("Found %d images in the s1 folder which overlap with the s2 tile provided in input. The number
includes all product required."%len(s1_tile_overlapping_list))

Deal with the start/end date and extent
date_interval_list = []
start_date = datetime.strptime(args.start, '%Y%m%d')
interval_start = start_date
end_date = datetime.strptime(args.end, '%Y%m%d')
while interval_start <= end_date:
 interval_end = interval_start + timedelta(days=args.step)
 date_interval_list.append([interval_start, interval_end])
 interval_start += timedelta(days=args.step + 1)

Prepare for the clip and reprojection of the images to the S2 tile extent/projection
s2_tile_datasource = gdal.Open(args.i)
s2_srs = osr.SpatialReference()
s2_proj = s2_tile_datasource.GetProjection()
s2_srs.ImportFromWkt(s2_proj)
s2_proj_for_warp = s2_srs.GetAttrValue("AUTHORITY", 0) + ":" + s2_srs.GetAttrValue("AUTHORITY", 1)
s2_extent = GetExtent(s2_tile_datasource.GetGeoTransform(), s2_tile_datasource.RasterXSize,
s2_tile_datasource.RasterYSize)
s2_extent_for_gdalwarp = str(s2_extent[1][0]) + " " + str(s2_extent[1][1]) + " " + str(s2_extent[3][0])
+ " " + str(s2_extent[3][1])

slurmconfigtemplate = """#!/bin/bash
#SBATCH --job-name={0}
#SBATCH --output={0}.out
#SBATCH --error={0}.err
#SBATCH --partition=E3_32_new

source /home/tom/libs/bashrc
"""

dict_pattern_images = {}
dict_pattern_warpedimages = {}
dict_pattern_slurm_conf = {}
for s1_tile in s1_tile_overlapping_list:
 # Prepare the gdal warp
 warped_output_name = os.path.join(args.temp,
os.path.splitext(os.path.basename(s1_tile))[0]+"_warpedToS2.tiff")
 warp_command = "gdalwarp -t_srs {0} -tr {1} -te {2} -tap -r 'near' -dstnodata '{5}' -overwrite {3}
{4}\n".format(s2_proj_for_warp, "10 10", s2_extent_for_gdalwarp, s1_tile, warped_output_name, args.min-
1)

 tile_time_str = os.path.basename(s1_tile)[0:8]
 tile_time = datetime.strptime(tile_time_str, '%Y%m%d')
 tilefamily = ""
 for date_interval in date_interval_list:
 if tile_time >= date_interval[0] and tile_time <= date_interval[1]:
 tilefamily += date_interval[0].strftime('%Y%m%d') + "to" + date_interval[1].strftime('%Y%m%d')
 if tilefamily == "":
 continue
 for patterns in patternToSeparate:
 for pattern in patterns:
 if pattern in s1_tile:
 tilefamily += "_" + pattern
 if not tilefamily in dict_pattern_warpedimages.keys():
 dict_pattern_images[tilefamily] = []
 dict_pattern_warpedimages[tilefamily] = []
 dict_pattern_slurm_conf[tilefamily] = slurmconfigtemplate.format(os.path.join(args.o, tilefamily))
 dict_pattern_images[tilefamily].append(s1_tile)
 dict_pattern_warpedimages[tilefamily].append(warped_output_name)

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 21 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 dict_pattern_slurm_conf[tilefamily] += "echo Launch %s\n" %warp_command
 dict_pattern_slurm_conf[tilefamily] += warp_command

for tilefamily in dict_pattern_slurm_conf.keys():
 output_mc_name = os.path.join(args.o, tilefamily +
"_nObs%d.tiff"%len(dict_pattern_images[tilefamily]))
 temp_output = os.path.join(args.temp, tilefamily + ".tiff")
 mc_command = "/export/apps/os422/enge/bin/projects/lifewatch/vgt/MCfloat {0} {1} {2}
{3}\n".format(temp_output, args.min, args.max, " ".join(str(warpeds1tile) for warpeds1tile in
dict_pattern_warpedimages[tilefamily]))
 dict_pattern_slurm_conf[tilefamily] += "echo Launch %s\n"%mc_command
 dict_pattern_slurm_conf[tilefamily] += mc_command
 dict_pattern_slurm_conf[tilefamily] += "echo File temporarily written at %s and moved at
%s\n"%(temp_output, output_mc_name)
 dict_pattern_slurm_conf[tilefamily] += "mv %s %s\n"%(temp_output, output_mc_name)
 for warpedimage in dict_pattern_warpedimages[tilefamily]:
 dict_pattern_slurm_conf[tilefamily] += "echo remove %s\n"%warpedimage
 dict_pattern_slurm_conf[tilefamily] += "rm %s\n"%warpedimage
 dict_pattern_slurm_conf[tilefamily] += "echo Everything finished!\n"
 slurmconfname = tilefamily + ".srun"
 with open(slurmconfname, 'w') as slurmconf:
 slurmconf.write(dict_pattern_slurm_conf[tilefamily])

print("All the .srun have been written. You can launch them with sbatch *.srun. (Check one first).")

Side note: The s2TileExtent_to_s1Mosaic.py script is configured to generate srun script to be easily
launched by slurm.

2.3.2 Gap-filling consideration

At the time of the processing chain design, no data filtering was applied on the SAR time series. The
added value of applying a temporal resampling was therefore not highlighted. Only in the case of
missing acquisitions, a gap-filling step must be applied.

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 22 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

3. Feature extraction

3.1 Optical data
3.1.1 Feature extraction

The optical data feature extraction step is directly inherited from the Sen2-Agri system using a dedicated
OTB application called otbcli FeatureExtractor with the “rededge” mode enabled (Figure 3-1). It
produces the relevant features used for the classification. The temporal resampling and gap-filling step
discussed in the section 2.2 are integrated in this application.

Figure 3-1. Workflow of the features extraction of the optical data

As described in RD.1, the features are computed for each date of the resampled and gapfilled time series
and conacetenaed together into a single multi-channel image file at 10-m resolution. The selected
features are the surface reflectance time series (green (B3), red (b4), NIR (B8), Red-edges (B5-6-7),
Short-Wave Infrared (SWIR) 1 (B11) and SWIR 2 (B12)), the Normalized Difference Vegetation Index
(NDVI), the Normalized Difference Water Index (NDWI) and the brightness. It results in 11 bands per
synthetic date.

One should notice that the NDVI computation uses the 10m broad NIR band (not the B8a). Concerning
the 20m resolution bands, only the SWIR 1 (B11) band is resampled at 10m spatial resolution, for the
calculation of the NDWI. The rest of these bands (Red-edges (B5-6-7) and SWIR 2 (B12)) are kept at
20m resolution, and the extraction is done using the 20m resolution raster layers derived from the
preparation of the subsidy application layer.

The FeatureExtractor Orfeo Toolbox application is used as follows (Algorithm 3-1):
Algorithm 3-1. Optical features extraction

otbcli FeatureExtractor -il $INPUT_DESCRIPTORS \

-out $featureTimeSeries int16 \

-rededge true \

-sp $SP \

-ram 6400 \

-mission $MISSION

Table 3-1. Specific input variables for the optical data features extraction

Input variable Role Default value [format]

INPUT_DESCRIPTORS S2 input descriptors (HDR files) [character]

SP S1 directory SENTINEL 10

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 23 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

MISSION Temporary folder to write the s1 tiles warped SENTINEL

Output variable Role Default value [format]

featureTimeSeries Output feature time series (multiband raster) [character]

3.1.2 Parcel level statistics extraction

This step allows extracting mean and standard deviation of each feature over each parcel. It can also
extract the number of pixel (npix) that is covering each parcel. It crosses the information of the
DeclSTD_Format_raster (the declaration shapefile rasterized) and the featureTimeSeries to create a
multiband “line raster” whose pixel index can be link to the parcel ID (Figure 3-2).

Figure 3-2.Workflow of the parcel level statistics extraction

It uses a compilled C++ code called parcelStat (Algorithm 3-2). It produces as output one multi-band
raster per statistic (mean and standard deviation).

Algorithm 3-2. ParcelStat algorithm
parcelStat $featureTimeSeries $DeclSTD_Format_raster $nfield $Object_feat_stat -1

Table 3-2. Specific input variables for the extraction of feature statistics per parcel

Input variable Role Default value
[format]

DeclSTD_Format_raster S2 input descriptors (HDR files) [character]

featureTimeSeries Path of the feature time series [character]

nfield Total number of fields [numeric]

NoData No data value, value of the pixels not belonging to a parcel -1 [numeric]

Output variable Role Default value
[format]

Object_feature

Name of the output ‘line raster’ (without extension).

Output feature time series is a multiband raster. One raster
is produced per statistics. the name of the stat is added to
the output name.

Output names:

- S2_featureTimeSeries_OBJECT_mean
- S2_featureTimeSeries_OBJECT_std
- S2_featureTimeSeries_OBJECT_npix

 [character]

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 24 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

3.2 SAR data
As shown in the Figure 3-3, the VV/VH ratio is computed for each weekly S1 mosaic. The sets of
features (coherence and backscattering) are then concatenated independently; VV, VH, ratio and
ascending and descending orbits being considered separetly. A set of temporal features are extracted
from the coherence, backscaterring and ratio time series. Finally, feature statistics are extracted at the
level of the parcel. These statistics will be used as input for the classification.

Figure 3-3. Workflow of the SAR data feature extraction steps

3.2.1 Ratio VV/VH

For each S1 acquisition, the VV/VH ratio is computed using a generic OTB application called
otbcli_BandMath (Algorithm 3-3).

Algorithm 3-3. OTB application to compute the S1 VV/VH ratio
otbcli_BandMath -il $SARimage_datei_VV $SARimage_datei_VH \

-out $SARimage_ratioVVVH?&gdal:co:TILED=YES&gdal:co:COMPRESS=LZW \

-exp im1b1/im2b1

Table 3-3. Specific variables for the computation of the SAR ratio

Input variable Role Default value [format]

SARimage_datei_VV SAR backscattering for date i in VV polarization [character]

SARimage_datei_VH SAR backscattering for date i in VH polarization [character]

Output variable Role Default value [format]

SARimage_ratioVVVH Output ratio for date i (single band raster) [character]

3.2.2 Feature concatenation

The complete sets of weekly SAR features (VV, VH and Ratio) are then concatenated to produce
multiband rasters or vrt (Virtual Raster Table - gdal driver). Each raster corresponds to one feature time
series. 10 feature time series rasters are therefore produced:

- Backscattering – VH – Ascending
- Backscattering – VV – Descending
- Backscattering – VH – Descending

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 25 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

- Backscattering – VV – Ascending
- Backscattering – RATIO – Ascending
- Backscattering – RATIO – Descending
- Coherence – VV – Ascending
- Coherence – VH – Ascending
- Coherence – VV – Descending
- Coherence – VH – Descending

The concatenation step can be performed using the GDAL function gdalbuildvrt. The needed variables
and the script are presented in Table 3-4 and in Algorithm 3-4.

Table 3-4. Specific variables for the feature concatenation of the SAR time series data

Input variable Role Default value
[format]

N_MONTHS The number of months from January to be monitored [MM]

ORBIT The orbit number of the S1 time series [numeric]

YEAR The year [YYYY]

COHE_FOLDER The folder containing the coherence data [character]

BACK_FOLDER The folder containing the backscattering data [character]

RATIO_FOLDER The folder containing the backscattering ratio data [character]

Output variable Role Default value
[format]

OUT_FOLDER Output folder to write multiband rasters or vrt (Virtual Raster
Table - gdal driver) [character]

Algorithm 3-4. Feature concatenation of the SAR time series data

#! /bin/bash

#Update the following variables to match the build folder and modules output folder
N_MONTHS=$1
ORBIT=$2
YEAR=$3
COHE_FOLDER=$4
BACK_FOLDER=$5
RATIO_FOLDER=$6
OUT_FOLDER=$7

echo "COHE FOLDER is $COHE_FOLDER" ; echo "AMPL FOLDER is $AMPL_FOLDER" ; echo "RATIO FOLDER is
$RATIO_FOLDER" ; echo "OUT FOLDER is $OUT_FOLDER"

MONTHS=(${YEAR}01 ${YEAR}02 ${YEAR}03 ${YEAR}04 ${YEAR}05 ${YEAR}06 ${YEAR}07 ${YEAR}08 ${YEAR}09
${YEAR}10 ${YEAR}11 ${YEAR}12)

echo Number of months to process for $YEAR is $N_MONTHS
echo
echo Starting writing listing the input descriptors
echo
INPUT_DESCRIPTORS_COHE_VV=$(find $COHE_FOLDER -name ${MONTHS[0]}*_20*_VV_*${orbit}*_cohe.tiff)
INPUT_DESCRIPTORS_COHE_VH=$(find $COHE_FOLDER -name ${MONTHS[0]}*_20*_VH_*${orbit}*_cohe.tiff)
INPUT_DESCRIPTORS_VV=$(find $AMPL_FOLDER -name ${MONTHS[0]}*_20*_VV_*${orbit}*_amp.tiff)
INPUT_DESCRIPTORS_VH=$(find $AMPL_FOLDER -name ${MONTHS[0]}*_20*_VH_*${orbit}*_amp.tiff)
INPUT_DESCRIPTORS_RATIO=$(find $RATIO_FOLDER -name ${MONTHS[0]}*_20*_RATIO_*${orbit}*_amp.tiff)
for ((i=1; i<${N_MONTHS}; i++)); do

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 26 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

echo adding ${MONTHS[i]} to list of input
INPUT_DESCRIPTORS_COHE_VV="${INPUT_DESCRIPTORS_COHE_VV} "
INPUT_DESCRIPTORS_COHE_VH="${INPUT_DESCRIPTORS_COHE_VH} "
INPUT_DESCRIPTORS_VV="${INPUT_DESCRIPTORS_VV} "
INPUT_DESCRIPTORS_VH="${INPUT_DESCRIPTORS_VH} "
INPUT_DESCRIPTORS_RATIO="${INPUT_DESCRIPTORS_RATIO} "
INPUT_DESCRIPTORS_COHE_VV+=$(find $COHE_FOLDER -name ${MONTHS[i]}*_20*_VV_*${orbit}*_cohe.tiff)
INPUT_DESCRIPTORS_COHE_VH+=$(find $COHE_FOLDER -name ${MONTHS[i]}*_20*_VH_*${orbit}*_cohe.tiff)
INPUT_DESCRIPTORS_VV+=$(find $AMPL_FOLDER -name ${MONTHS[i]}*_20*_VV_*${orbit}*_amp.tiff)
INPUT_DESCRIPTORS_VH+=$(find $AMPL_FOLDER -name ${MONTHS[i]}*_20*_VH_*${orbit}*_amp.tiff)
INPUT_DESCRIPTORS_RATIO+=$(find $RATIO_FOLDER -name ${MONTHS[i]}*_20*_RATIO_*${orbit}*_amp.tiff)
done
echo INPUT_DESCRIPTORS_COHE_VV is $INPUT_DESCRIPTORS_COHE_VV

echo Writing COHE_VV_${orbit}.vrt
gdalbuildvrt -separate $OUT_FOLDER/COHE_VV_${orbit}.vrt $INPUT_DESCRIPTORS_COHE_VV --config
GDAL_CACHEMAX 4000
echo Writing $OUT_FOLDER/SAR_featuretimeseries_COHE_VV_${orbit}_${YEAR}_${N_MONTHS}MONTHS.tif
gdalwarp -of Gtiff $OUT_FOLDER/COHE_VV_${orbit}.vrt
$OUT_FOLDER/SAR_featuretimeseries_COHE_VV_${orbit}_${YEAR}_${N_MONTHS}MONTHS.tif -co COMPRESS=LZW --
config GDAL_CACHEMAX 8000 -dstnodata -10000 -tr 10 10 -co BIGTIFF=YES -multi -wo NUM_THREADS=ALL_CPUS

echo Writing COHE_VH_${orbit}.vrt
gdalbuildvrt -separate $OUT_FOLDER/COHE_VH_${orbit}.vrt $INPUT_DESCRIPTORS_COHE_VV --config
GDAL_CACHEMAX 4000
echo Writing $OUT_FOLDER/SAR_featuretimeseries_COHE_VH_${orbit}_${YEAR}_${N_MONTHS}MONTHS.tif
gdalwarp -of Gtiff $OUT_FOLDER/COHE_VH_${orbit}.vrt
$OUT_FOLDER/SAR_featuretimeseries_COHE_VH_${orbit}_${YEAR}_${N_MONTHS}MONTHS.tif -co COMPRESS=LZW --
config GDAL_CACHEMAX 8000 -dstnodata -10000 -tr 10 10 -co BIGTIFF=YES -multi -wo NUM_THREADS=ALL_CPUS

echo Writing VV_${orbit}.vrt
gdalbuildvrt -separate $OUT_FOLDER/VV_${orbit}.vrt $INPUT_DESCRIPTORS_VV --config GDAL_CACHEMAX 4000
echo Writing $OUT_FOLDER/SAR_featuretimeseries_AMPL_VV_${orbit}_${YEAR}_${N_MONTHS}MONTHS.tif
gdalwarp -of Gtiff $OUT_FOLDER/VV_${orbit}.vrt
$OUT_FOLDER/SAR_featuretimeseries_AMPL_VV_${orbit}_${YEAR}_${N_MONTHS}MONTHS.tif -co COMPRESS=LZW --
config GDAL_CACHEMAX 8000 -dstnodata -10000 -tr 10 10 -co BIGTIFF=YES -multi -wo NUM_THREADS=ALL_CPUS

echo Writing VH_${orbit}.vrt
gdalbuildvrt -separate $OUT_FOLDER/VH_${orbit}.vrt $INPUT_DESCRIPTORS_VH --config GDAL_CACHEMAX 4000
echo Writing $OUT_FOLDER/SAR_featuretimeseries_AMPL_VH_${orbit}_${YEAR}_${N_MONTHS}MONTHS.tif
gdalwarp -of Gtiff $OUT_FOLDER/VH_${orbit}.vrt
$OUT_FOLDER/SAR_featuretimeseries_AMPL_VH_${orbit}_${YEAR}_${N_MONTHS}MONTHS.tif -co COMPRESS=LZW --
config GDAL_CACHEMAX 8000 -dstnodata -10000 -tr 10 10 -co BIGTIFF=YES -multi -wo NUM_THREADS=ALL_CPUS

echo Writing RATIO_${orbit}.vrt
gdalbuildvrt -separate $OUT_FOLDER/RATIO_${orbit}.vrt $INPUT_DESCRIPTORS_RATIO --config GDAL_CACHEMAX
4000
echo Writing $OUT_FOLDER/SAR_featuretimeseries_AMPL_RATIO_${orbit}_${YEAR}_${N_MONTHS}MONTHS.tif
gdalwarp -of Gtiff $OUT_FOLDER/RATIO_${orbit}.vrt
$OUT_FOLDER/SAR_featuretimeseries_AMPL_RATIO_${orbit}_${YEAR}_${N_MONTHS}MONTHS.tif -co COMPRESS=LZW --
config GDAL_CACHEMAX 8000 -dstnodata -10000 -tr 10 10 -co BIGTIFF=YES -multi -wo NUM_THREADS=ALL_CPUS

echo "--- Cleaning temporary files ---"
rm $OUT_FOLDER/RATIO_${orbit}.vrt
rm $OUT_FOLDER/VH_${orbit}.vrt
rm $OUT_FOLDER/VV_${orbit}.vrt
rm $OUT_FOLDER/COHE*

3.2.3 Temporal features

This step synthetises the backscattering and coherence values for key period of the growing cycle of
crops. It is performed on pixel-basis and uses four descriptive statistics which are applied over different
period. The four statistical variables are the following:

- Mean;
- Standard deviation;

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 27 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

- Coefficient of variation;
- Value of the quantile 10, as a proxy of the minimun value.

Such temporal features allow to reduce typical noise of the SAR data while keeping a strong temporal
dimension.

This temporal feature extraction step uses a python code that allow writing srun script to be easily launch
with slurm. Each statistic uses a dedicated C++ code, except the coefficient of variation which is
computed directly from the mean and the standard deviation.

The 2 following sections detail the statistics and period to be used respectively for the backscattering
and the coherence.

3.2.3.1 Backscattering intensity temporal features

For the backscattering (VV, VH and Ratio), the temporal features consist in:

• The mean over iterative 2-month periods. If the whole year is considered for the classification,
the key periods are: Jan-Feb / Mar-Apr / May-Jun / Jul-Aug / Sep-Oct / Nov-Dec.

• The coefficient of variation over iterative 2 months periods. If the whole year is considered for
the classification, the key periods are: Jan-Feb / Mar-Apr / May-Jun / Jul-Aug / Sep-Oct / Nov-
Dec.

For the computation of the Backscatteringitude temporal features, VV and VH polarizations were
considered separately as well as the ascending and descending path.

The number of backscattering temporal features per period and per statistic measure is therefore of 6:

1. Ascending – VV
2. Ascending – VH
3. Descending – VV
4. Descending – VH
5. Ascending – Ratio
6. Descending – Ratio

3.2.3.2 Coherence temporal features

For the coherence, the temporal features consist in:

• The standard deviation of the coherence along the whole period of interest. If the whole year
is considered for the classification, this feature corresponds to the standard deviation of the
coherence of each pixel through the entire year and one temporal feature is produced.

• The value of the quantile 10 of the coherence for each month of the period of interest, as a
proxy of the minimun coherence value. If the whole year is considered for the classification, 12
temporal features are produced.

• The mean value of the coherence of each month of the period of interest. If the whole year is
considered for the classification, 12 temporal features are produced.

For the computation of the coherence temporal features, VV and VH coherence were considered
separately while ascending and descending path were considered together.

The number of coherence temporal features per period and per statistic measure is therefore of 2:

1. Asending&Descending – VV
2. Asending&Descending – VH

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 28 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

(a) (b)

Figure 3-4. (a) Exemple of monthly coherence over a Winter Wheat field in Netherlands (b) Mean of
the coherence value of March 2017 over Netherlands

The calculation of the temporal features can be performed using the python script
launch_temporal_features.py. It computes various statistical quantities over a given temporal extent.
The needed input variables are presented in the Table 2-1 and the script in Algorithm 3-5.

Table 3-5. Specific variables for the temporal features computation based on the S1 time series

Input variable Role Default value
[format]

S1_dir S1 directory [character]

start_date Start date of the temporal extent [YYYYMMDD]

end_date End date of the temporal extent [YYYYMMDD]

pattern

Space separated list of coma separated patterns that will be
considered separately for the calculations. Multiple entries
allowed. NB: only files matching at least one of the pattern
will be considered. If you do not want to separate different
patterns put at least one pattern to get correct tif in the s1
folders.

VV,VH asc,desc

min Minimal value for the s1 data. Any smaller value is considered
as nodata [numeric]

max Maximal value for the s1 data. Any higher value is considered
as nodata. [numeric]

computeMean Compute or not the Mean over temporal extent. [boolean] True/False

computeStd Compute or not the standard deviation over the temporal
extent. [boolean] True/False

computeQuantile10 Compute or not the quantile 10 (more precisely the percentile
10) over the temporal extent. [boolean] True/False

computeQuantile90 Compute or not the quantile 90 (more precisely the percentile
90) over the temporal extent. [boolean] True/False

computeCoefVar Compute or not the coeficient of variation over the temporal
extent. [boolean] True/False

Output variable Role Default value
[format]

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 29 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

output_dir Output folder for the created output tif. fid [character]

Algorithm 3-5. Temporal features computation from SAR data (launch_temporal_features.py)
import os
import argparse
import argparse, os, sys, subprocess
from datetime import datetime, timedelta

Example: mkdir slurm_jobs; cd slurm_jobs;
parser = argparse.ArgumentParser(description='Compute various statistical quantities over a given
temporal extent NB: images must be in same projection and aligned.')
parser.add_argument('-i', help='Input image directory', required=True)
parser.add_argument('-o', default="./", type=str, help='Directory of the created output tif.')
parser.add_argument('-start', default='20170101', type=str, help='Start date of the temporal extent.
Format YYYYMMDD.')
parser.add_argument('-end', default='20170601', type=str, help='End date of the temporal extent. Format
YYYYMMDD.')
parser.add_argument('-p', '--patterns', nargs='*', default=['VV', 'asc', 'cohe'], help='Patterns to
select images participating in the temporal statistics calculation')
parser.add_argument('-min', default=0, type=float, help='Minimal value for the s1 data. Any smaller value
is considered as nodata.')
parser.add_argument('-max', default=100, type=float, help='Maximal value for the s1 data. Any higher
value is considered as nodata.')
parser.add_argument('-computeMean', default=False, type=bool, help='Compute or not the Mean over temporal
extent.')
parser.add_argument('-computeStd', default=False, type=bool, help='Compute or not the standard deviation
over the temporal extent.')
parser.add_argument('-computeQuantile10', default=False, type=bool, help='Compute or not the quantile 10
(more precisely the percentile 10) over the temporal extent.')
parser.add_argument('-computeQuantile90', default=False, type=bool, help='Compute or not the quantile 90
(more precisely the percentile 90) over the temporal extent.')
parser.add_argument('-computeCoefVar', default=False, type=bool, help='Compute or not the coeficient of
variation over the temporal extent.')
args = parser.parse_args()

slurmconfigtemplate = """#!/bin/bash
#SBATCH --job-name={0}
#SBATCH --output={0}.out
#SBATCH --error={0}.err
#SBATCH --partition=sen2agri

#source /home/tom/libs/bashrc
"""

Extract file list matching the required pattern and within the temporal extent
s1tiles = [os.path.join(dirpath, filename) for dirpath, dirnames, filenames in os.walk(args.i) for
filename in filenames if (os.path.splitext(filename)[1].lower() == ".tiff" or
os.path.splitext(filename)[1].lower() == ".tif")]
print("Found %d images (.tiff or .tif, capital letters allowed) in the s1 folder."%len(s1tiles))
s1tiles_with_match = []
for tile in s1tiles:
 match = True
 for pattern in args.patterns:
 if not pattern in tile:
 match = False
 if match:
 s1tiles_with_match.append(tile)
print("Found %d images matching the patterns in the s1 folder."%len(s1tiles_with_match))

start_date = datetime.strptime(args.start, '%Y%m%d')
end_date = datetime.strptime(args.end, '%Y%m%d')
s1tiles_to_process = []
for tile in s1tiles_with_match:
 tile_time_str = os.path.basename(tile)[0:8]
 tile_time = datetime.strptime(tile_time_str, '%Y%m%d')
 if tile_time > start_date and tile_time < end_date:
 s1tiles_to_process.append(tile)

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 30 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

print("Found %d images matching the provided patterns and being within the time
interval."%len(s1tiles_to_process))

mean_output_file = ""
std_output_file = ""
sbatch_command = ""

def write_slurm_config(config_name, stat_type = "mean"):
 global mean_output_file
 global std_output_file
 global sbatch_command
 srun_name = config_name + ".srun"
 slurm_conf_text = slurmconfigtemplate.format(config_name)
 outfile_name = config_name + ".tif"
 outfile_path = os.path.join(args.o, outfile_name)
 temp_outfile_path = os.path.join("/d8/UCL/SAR_temporalstats/scratch/", outfile_name)
 command_string = ""
 if stat_type == "mean":
 command_string = "/d38/UCL/enge/code/otb/pixel/build/MC_noround %s %s %s %s\n"%(temp_outfile_path,
args.min, args.max, " ".join(s1tiles_to_process))
 mean_output_file = outfile_path
 elif stat_type == "std":
 command_string = "/d38/UCL/enge/code/otb/pixel/build/STD %s %s %s %s\n"%(temp_outfile_path,
args.min, args.max, " ".join(s1tiles_to_process))
 std_output_file = outfile_path
 elif stat_type == "quant10":
 temp_vrt_path = temp_outfile_path.replace("tif","vrt")
 command_string = "gdalbuildvrt -separate %s %s\n"%(temp_vrt_path, " ".join(s1tiles_to_process))
 command_string += "/d38/UCL/enge/code/otb/pixel/build/minimumQuantile_noMC %s %s
%s\n"%(temp_outfile_path, temp_vrt_path, temp_vrt_path)
 command_string += "rm %s\n"%(temp_vrt_path)
 elif stat_type == "quant90":
 temp_vrt_path = temp_outfile_path.replace("tif","vrt")
 command_string = "gdalbuildvrt -separate %s %s\n"%(temp_vrt_path, " ".join(s1tiles_to_process))
 command_string += "/d38/UCL/enge/code/otb/pixel/build/maximumQuantile_noMC %s %s
%s\n"%(temp_outfile_path, temp_vrt_path, temp_vrt_path)
 command_string += "rm %s\n"%(temp_vrt_path)
 elif stat_type == "coefVar":
 command_string = "otbcli_BandMath -il %s %s -out %s -exp 'im1b1/im2b1'\n"%(std_output_file,
mean_output_file, temp_outfile_path)

 with open(srun_name, 'w') as slurmconf:
 slurmconf.write(slurm_conf_text)
 slurmconf.write(command_string)
 slurmconf.write("mv %s %s\n"%(temp_outfile_path, outfile_path))
 slurmconf.write("touch %s\n"%(outfile_path.replace(".tif",".end")))
 sbatch_command += "sbatch %s;"%srun_name

base_output_name = "SAR_temporalStat_"+args.start+"_"+args.end+"_"+"_".join(args.patterns)
if args.computeMean:
 write_slurm_config(base_output_name+"_mean", "mean")

if args.computeStd:
 write_slurm_config(base_output_name+"_std", "std")

if args.computeQuantile10:
 write_slurm_config(base_output_name+"_quant10", "quant10")

if args.computeQuantile90:
 write_slurm_config(base_output_name+"_quant90", "quant90")

if args.computeCoefVar:
 write_slurm_config(base_output_name+"_coefVar", "coefVar")

print("To launch all slurm jobs do\n\t \033[92m %s \033[0m"%sbatch_command)

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 31 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

3.2.4 Parcel level statistics extraction

This step allows extracting mean and standard deviation of each feature over each parcel. It can also
extract the number of pixel (npix) that is covering each parcel. It crosses the information of the
DeclSTD_Format_raster (the declaration shapefile rasterized) and each featureTimeSeries to create a
multiband ‘line raster’ whose pixel index can be link to the parcel ID (Figure 3-5).

Figure 3-5.Workflow of the parcel level statistics extraction

It uses a compilled C++ code called parcelStat (the same than the one used for optical data, Algorithm
3-6). It produces as output one multi-band raster per statistic (mean and standard deviation).

Algorithm 3-6. ParcelStat algorithm
parcelStat $featureTimeSeries $DeclSTD_Format_raster $nfield $Object_feat_stat -1

Table 3-6. Specific input variables for the extraction of feature statistics by parcel from the S1 time series

Input variable Role Default value
[format]

DeclSTD_Format_raster S2 input descriptors (HDR files) [character]

featureTimeSeries Path of the feature time series

nfield Total number of fields [numeric]

NoData No data value, value of the pixels not belonging to a parcel -1 [numeric]

Output variable Role Default value
[format]

Object_feature

Name of the output ‘line raster’ (without extension)

Output feature time series is a multiband raster. One
raster is produced per statistics. the name of the stat is
added to the output name.

Output names:

- S1_featureTimeSeries*_OBJECT_mean
- S1_featureTimeSeries*_OBJECT_std
- S1_featureTimeSeries*_OBJECT_npix

 [character]

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 32 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

4. Object classification

The object classification step is performed using R software and several dedicated libraries. They will
be deeply detailed and referenced so that one can choose to implement them in another scripting
language.

4.1 Format object feature statistics
4.1.1 Import object feature statistics: from ‘line raster’ to csv

This step extracts the statistical values (mean and std) from the raster containing the parcel level statistics
(Object_feat_stat rasters) to include them in a csv file which make the link with the the parcel unique
ID (NewID) and the declared crop ID (CTnumL4A).

It creates one csv per feature group:

- The temporally resampled and gap-filled optical features: gathering spectral bands + NDVI,
NDWI, Brightness;

- The weekly SAR features: gathering "COHE_VV_asc" ,"RATIO_VVVH_asc", gathering
"AMPL_VV_asc","AMPL_VH_asc","AMPL_VV_desc","AMPL_VH_desc",
"COHE_VH_asc","COHE_VV_desc","COHE_VH_desc","RATIO_VVVH_desc"

- The SAR temporal features: gathering “VH_sc_cohe_mean", "VV_sc_cohe_std",
"VH_sc_cohe_quant10","VV_sc_cohe_mean","VH_sc_cohe_std","VV_sc_cohe_quant10","V
H__asc_amp_mean","VH__desc_amp_mean","VV__asc_amp_mean","VV__desc_amp_mean
","VH__asc_amp_coefVar","VH__desc_amp_coefVar","VV__asc_amp_coefVar","VV__des
c_amp_coefVar","VVVH_asc_RATIO_mean","VVVH_desc_RATIO_mean","VVVH_asc_R
ATIO_coefVar","VVVH_desc_RATIO_coefVar"

Figure 4-1. Example of csv containing the unique ID and the declared crop type oof the parcel along with the

optical features statistic per parcel

Figure 4-1 illustrates the format of the output csv containing the optical features. Each row corresponds
to a parcel:

- the first column refers to the unique ID (NewID);
- the second column refers to the CTnumL4A corresponding to the declared crop (CTnumL4A);
- the 3rd to n columns (n being the number of features * 2 (mean and std)) contains the value of

the features. The names of the columns are explicit enough to be able to retrieve and analyze
the relative importance of each feature in the classification results.

The two first columns are extracted from the standardized subsidy application layer.

4.1.2 Features concatenation

The 3 csv are then merged by doing an inner join operation on the unique parcel ID column (NewID)
(Algorithm 4-1).

NewID CTnumL4A S2_1_b3_mean_20170105 S2_2_b4_mean_20170105 S2_3_b5_mean_20170105 S2_4_b6_mean_20170105 …
155846 131 140,235 269,639 1436,358 897,852 …
846548 12 658,685 325,214 2589,325 968,381 …
515658 12 556,896 256,689 2487,593 752,589 …
615668 44 542,233 198,325 1569,586 856,256 …

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 33 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Algorithm 4-1. Features concatenation by merging CSV files
data_joined=inner_join(declSTD_proj_buffer_crop_conformCSV,SAR_features,by="NewID")

data_joined=inner_join(data_joined,Opt_features,by="NewID")

data_joined=inner_join(data_joined,SAR_tempStats,by="NewID")

4.2 Select parcels for training, classification and validation
For this selection step, different filtering operations are applied. They are presented in the next sub-
sections and are summarized in Figure 4-2.

Figure 4-2. Specific workflow for the selection of the parcels used by the classification scheme. The by-default

values are the following ones: LC_monitored = [1,2,3,4], S2pixMIN = 3, S1pixMIN = 1, PaMIN = 30, S2pixBEST
= 10, PaCalibH = 4000, PaCalibL = 1333, Sample_ratioH = 0.25, Sample_ratioL = 0.75, smote_size = 1000.

The output of the selection step is presented as a single table of the same size as the input standardized
subsidy application layer with quality flags, with two additional columns specifying the trajectory
followed by the parcel: ‘Trajectory’ and ‘Purpose’.

Trajectory column takes the values:

- ‘0’ when the parcel is not assessed;
- ‘1’ when the parcel is assessed.

Purpose column takes the values:

- ‘0’ when the parcel is not assessed;
- ‘1’ when the parcel is assessed and used for calibration;
- ‘2’ when the parcel is assessed and used for validation.

All the parcels with the Trajectory = 1 are classified.

The needed input variables are presented in Table 4-1.

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 34 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Table 4-1. Specific variables for the selection of parcels for classification, training and validation

Input variable Role Default value
[format]

Declaration_dataset Name of the PostGIS layer of the standardised subsidy
application layer with quality flags [character]

LC_monitored List of LC classes that should be monitored 1,2,3,4 [numeric]

S2pixMIN Minimum number of S2 pixels that contain the parcel to
be assessed 3 [numeric]

S1pixMIN Minimum number of S1 pixels that contain the parcel to
be assessed 1 [numeric]

PaMIN
Minimum number of parcels with S2pix >= S2pixMIN and
S1pix >= S1pixMIN by crop type for the crop type to be
assessed

30 [numeric]

S2pixBEST Minimum number of S2 pixels that contain the parcel to
be used for the calibration 10 [numeric]

PaCalibH
Minimum number of parcels with S2pix >= S2pixBEST by
crop type to belong to the first strategy of splitting
between calibration and validation

4000 [numeric]

PaCalibL

Maximum number of parcels with S2pix >= S2pixBEST by
crop type to belong to the third strategy of splitting
between calibration and validation. Required: higher than
smote_size.

1333 [numeric]

Sample_ratioH
Ratio of the remaining parcels by crop type to be used for
the calibration, for the crop types with >= 4000 parcels
with S2pix >= S2pixBEST

0.25 [numeric]

Sample_ratioL
Ratio of the remaining parcels by crop type to be used for
the calibration, for the crop types with < 1100 parcels with
S2pix >= S2pixBEST

0.75 [numeric]

smote_size

The number representing the desired final number of
samples for each class. If the number is already reached,
no synthetic samples are created. If the number is not
reached, a certain amount of synthetic samples will be
created to reach the smote_size (explained in section 4.3).

1000 [numeric]

Output variable Role Default value
[format]

Trajectory Indicates if the parcel is assessed (= 1) or not (= 0) by the
classification scheme [numeric]

Purpose
Indicates if the parcel is not assessed (= 0), is assessed and
used for calibration (= 1) or is assessed and used for the
validation (= 2) by the classification scheme

[numeric]

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 35 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

4.2.1 Non-assessed parcels

The first task consists in filtering out the parcels that are not assessable by the classification scheme
(Figure 4-3). These parcels will not be included in the further steps and must be flagged as “not-
assessed”.

Figure 4-3. Non-assessed parcels by the classification scheme. The by-default values are the following ones:

LC_monitored = [1,2,3,4], S2pixMIN = 3, S1pixMIN = 1, PaMIN = 30.

The decision about the assessibility of each parcel are taken looking at three aspects:

• The landcover category of the crop type: this is represented by the field LC in the standardized
subsidy application layer with quality flags. By default, the LC classes 0 (other natural areas)
and 5 (greenhouse and nursery) are not assessed. The remaining LC classes are 1 (annual crop),
2 (permanent crop), 3 (grassland) and 4 (fallow land) and correspond to LC_monitored.

• The number of S2 pixels and S1 pixels by parcel that are used for the extraction of the
spectral values: at least one S2 pixel and one S1 pixel is needed by parcel to extract values
from the the S2 and S1 time series. Given the fact that standard deviation values are calculated
by parcel from the S2 time-series, the by-default S2pixMIN is settled to 3. Concerning the by-
default S1pixMIN, it is settled to 1 in order to keep as many parcels as possible.

• The number of parcels with S2pix >= S2pixMIN and S1pix >= S1pixMIN by crop type:
the crop types that have a very few parcels show a bad accuracy in the classification results. It
is needed a minimum number of parcels by crop type to get enough information for the
classification. The by-default PaMIN is settled to 30.

All the parcels that pass through these three filters are classified.

4.2.2 Parcels used for calibration and validation

Among the parcels that are classified, all the parcels are used either for the calibration of the RF model
or for the validation of the results (Figure 4-4).

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 36 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Figure 4-4. Parcels classified and used for calibration and validation. The by-default values are the following ones:
S2pixBEST = 10, PaCalibH = 4000, PaCalibL = 1333, Sample_ratioH = 0.25, Sample_ratioL = 0.75, smote_size
= 1000.

4.2.2.1 Selecting the best parcels

In order to select consistent and stable statistic values at parcel level to calibrate the RF model, only the
parcels with a certain number of pixels are used for the training. The minimum number of pixels is
configurable (S2pixBEST). The by-default value is 10 S2 pixels.

The parcels with a number of pixels below this minimum number threshold will be excluded from the
calibration pool and will be part of the validation pool.

4.2.2.2 Splitting parcels for training and validation

Three “strategies” have been defined for the splitting of the parcels for training and validation,
depending on the number of input parcels in the calibration pool for each crop type. It is needed to proper
use the SMOTE algorithm (explained in section 4.3) which is creating in the next step synthetic samples
for the crop types with a relatively low number of parcels. This step improves considerably the accuracy
of the classification in these specific crop types.

• Strategy 1: with a large number of parcels by crop type, a relatively low ratio of parcels is used
for the calibration, while the rest is used for the validation. The by-default values are settled to
4000 for the number of parcels by crop type (PaCalibH) and to 0.25 for the ratio between
calibration and validation (Sample_ratioH).

• Strategy 2: with a medium number of parcels by crop type (but higher than the number of
parcels that are reached with the SMOTE algorithm, corresponding to smote_size), a minimum
number of parcels are kept for the calibration (equal to smote_size) in order to avoid to create
artificial samples where the number of calibration parcels is sufficient. The slection is made

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 37 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

randomly by crop type. The rest of the parcels are used for the validation. The by-default values
are settled to 1333 for the number of parcels by crop type (PaCalibL) and 1000 for the
smote_size.

• Strategy 3: with a relatively low number of parcels, a relatively high ratio of parcels is used for
the calibration, while the rest is used for the validation. The by-default values are settled to 1100
for the number of parcels by crop type (PaCalibL) and to 0.75 for the ratio between calibration
and validation (Sample_ratioL).

4.3 Apply SMOTE algorithm to synthetically over-sample the
minority classes

In order to improve to accuracy of the minor crop type classes, the Synthetic Minority Over-Sampling
Technique (SMOTE) algorithm is applied to each crop type class represented by less parcels than the
smote_size variable (by defaut, smote_size = 1000).

SMOTE method was introduced by Chawla N. et al (2002) and corresponds to a powerfull over-
sampling method that allows avoiding over-fitting effects encountered by using more simple methods
(e.g. random over-sampling of the minority class or random under-sampling of the majority class).
SMOTE method creates extra training samples by analyzing the real samples in the feature space. The
synthetic extra samples are added along the line segments joining any/all of the k nearest neighbor
samples of the same class.

The pseudo code of the algorithm SMOTE can be found in RD.2 (Chawla N. et al., 2002).

The SMOTE algorithm is also available in the smotefamily R package (https://cran.r-
project.org/web/packages/smotefamily/smotefamily.pdf) through the SMOTE function. Its
implementation is described in Algorithm 4-2.

Algorithm 4-2. SMOTE algorithm to increase the amount of in situ data in minor crop classes
for each classI in the calibration_dataset

 data_calib$test = ifelse(data_calib$CTnum==classI , 1 , 0) # test is the column on which SMOTE is
performed. Samples with test = 1 are the samples of the classI. Samples with test = 0 are all the other
classes of the dataset.

 dup_size = smote_size / number of already existing sample for this class

 # dup_size is the number representing the desired times of synthetic minority instances over the
original number of majority instances

 if (dup_size > 1) # the amount of original sample is lower than the smote_size. SMOTE is run.

 SMOTEd=SMOTE(data_calib[,!names(data) %in% c(“test”,”CTnumL4A”,”Trajectory”,”Purpose”) ,
data_calib$test, K=k, dup_size=dup_size) # keeps only the features columns and the ID.

 originals=SMOTEd$orig_P

 synthetics=SMOTEd$syn_data

 originals$SMOTE=1

 synthetics$SMOTE=0

 synthetics$CTnum=ClassI

 originals$CTnum=ClassI

 Smoted_data=rbind(Smoted_data,originals,synthetics)

 else

 originals= data_calib[which(data_calib$CTnum==ClassI,]

 colnames(originals)[which(names(originals) == "test")] <- "class"

https://cran.r-project.org/web/packages/smotefamily/smotefamily.pdf
https://cran.r-project.org/web/packages/smotefamily/smotefamily.pdf

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 38 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 originals$SMOTE=1

 Smoted_data=rbind(Smoted_data,originals)

Table 4-2. Specific input variables for the SMOTE algorithm

Input variable Role Default value
[format]

data_calib The csv file with data used for the calibration (Purpose =
1). [csv]

smote_size

The number representing the desired final number of
samples for each class. If the number is already reached,
no synthetic samples are created. If the number is not
reached, a certain amount of synthetic samples will be
created to reach the smote_size.

1000 [numeric]

k The number of nearest neighbors during sampling
process. 5 [numeric]

Output variable Role Default value
[format]

Smoted_data Matrix containing both original and smoted data. [matrix]

4.4 Train the Random Forest model
The classifier is trained using the original and synthetic parcel feature values gathered in the new
Smoted_data matrix and the declared crop type data (Algorithm 4-3).

Ranger is a fast implementation of original Random Forest introduced in RD.4 (Breiman, 2001).

The Random Forest algorithm is available in the Ranger R package (https://cran.r-
project.org/web/packages/ranger/ranger.pdf) through the ranger function.

The probability option of the ranger random forest is used to grow probability forest, i.e. each tree
returns a probability estimate and these estimates can be averaged to get the forest probability estimate.

Algorithm 4-3. Building the Random Forest model
RF_model = ranger(CTnumL4A ~ ., data = droplevels(Smoted_data), write.forest = TRUE,probability =
TRUE,num.trees = numtrees,mtry = NULL,importance = "impurity",min.node.size = 10,seed = 42)

The random forest model can be saved as R object, which creates a serialized version of the dataset

saveRDS(Ranger_trees, ‘RF_model.rds’)

Table 4-3. Specific input variables for the model Random Forest

Input variable Role Default value
[format]

Smoted_data
Matrix containing both original and smoted data with
CTnum being the crop type of the parcel (= label to train
the RF classifier) and all the parcel feature values.

[matrix]

numtrees Number of trees in the random forest 300 [numeric]

min.node.size Minimal node size. 10 [numeric]

https://cran.r-project.org/web/packages/ranger/ranger.pdf
https://cran.r-project.org/web/packages/ranger/ranger.pdf

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 39 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Output variable Role Default value
[format]

RF_model The random forest model [.rds file]

4.5 Classify and format the classification output table
The random forest model is then applied on all the parcels to be classified (with Trajectory=1)
(Algorithm 4-4).

Algorithm 4-4. Classification using the Random Forest algorithm
1. Classify all the parcel applying the random forest model

predict_Ranger_trees=predict(RF_model,data_classif)

predictions=predict_Ranger_trees$predictions

2. Extract the most probable result of the prediction and its probability value

predict.max=apply(predictions, 1, max) # the maximum probability

predict.whichmax=apply(predictions, 1, which.max)

predict.class=colnames(predictions)[predict.whichmax]

3. Extract the second most probable result of the prediction and its probability value

n <- ncol(predictions)

predict.2max=apply(predictions, 1, function(x) sort(x,partial=n-1)[n-1])

predict.which2max=apply(predictions, 1, function(x) which(x==sort(x,partial=n-1)[n-1])[1])

predict.2class=colnames(predictions)[predict.which2max]

predict.2class=ifelse(predict.class==predict.2class,colnames(predictions)[apply(predictions, 1,
function(x) which(x==sort(x,partial=n-1)[n-1])[2])],predict.2class)

4. Format the output

Predict_classif=data.frame(data_predict$NewID,as.integer(data_predict$AREA),data_predict$TARGET,predict
.class,round(predict.max,digits=3),predict.2class,round(predict.2max,digits=3))

colnames(Predict_classif)=c('NewID','CT_decl','CT_pred_1','CT_conf_1','CT_pred_2','CT_conf_2')

5. Save the output

write.csv(Predict_classif,paste0(Predict_classif,".csv"))

Table 4-4. Specific variables for the RF model application for S2 and S1 time series classification

Input variable Role Default value
[format]

RF_model Random Forest model corresponding to the classification. [.rds file]

data_classif Table with the parcels that are classified (Trajectory= 1). [csv]

Output
variable Role Default value

[format]

Predict_classif The output classification result saved in csv. [csv]

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 40 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

The first two predictions of the RF model, corresponding to the predicted crop type classes with the
higher confidence levels are kept in the output Predict_classif file. The table contain the following fields
(Table 4-5).

Table 4-5. Output attribute fields with the results of the RF classification (Predict_classif.csv)

Field name Role Default value
[format]

NewID The parcel unique ID [integer]

CT_decl L4A crop type code declared by the farmer [integer]

CT_pred_1 Predicted L4A crop type code from the model with the
highest degree of confidence [integer]

CT_conf_1 Degree of confidence of CT_pred1 [float, between 0 and 1]

CT_pred_2 Predicted L4A crop type code from the model with the
second highest degree of confidence [integer]

CT_conf_2 L4A crop type code declared by the farmer [float, between 0 and 1]

4.6 Update the subsidy application layer with the
classification results

In PostGIS, the standardised subsidy application layer with quality flages is updated with the results of
the RF classification (Predict_classif.csv).

The standardized subsidy application layer with quality flags is updated with the classification results
with the following PostGIS query (Algorithm 4-5).

Algorithm 4-5. Update of the subsidy application layer with the classification results
update declaration_dataset

set "CT_decl" = predict_classif.ct_decl,

 "CT_pred_1" = predict_classif.ct_pred_1,

 "CT_conf_1" = predict_classif.ct_conf_1,

 "CT_pred_2" = predict_classif.ct_pred_2,

 "CT_conf_2" = predict_classif.ct_conf_2,

from predict_classif

where predict_classif.NewID = declaration_dataset.NewID;

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 41 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

5. Validation

A validation is performed directly based on the parcels that were selected for the classification and
validation (Purpose = 2). The comparison between the declared L4A crop type and the first L4A
prediction among these parcels is used to build a confusion matrix. From this matrix, the Overall
Accuracy and the Kappa of the classification are calcualted, as well as the producer’s and user’s
accuracy by crop type. These two last values are then used to calculate the F-Score of each crop type.
Finally, a plot that present the results of the validation is generated.

The specific variables for the validation and the script are presented in Table 5-1 and Algorithm 5-1.
Table 5-1. Specific variables for the validation

Input variable Role Default value
[format]

RF_model Random Forest model corresponding to the classification. [.rds file]

data_valid Table with the parcels that are classified and used for the
validation (Purpose= 2). [csv]

Output variable Role Default value
[format]

Accuracy_plot Plot presenting the accuracy statistics: Overall Accuracy,
Kappa and F-Score of the crop types [jpeg]

Algorithm 5-1. Validation of the Random Forest classification

1. Extract the first prediction (with highest confidence level) of the parcels selected for the
validation

predict_Ranger_trees <- readRDS(paste(workdir,predictname,".rds",sep=""))

predictions=predict_Ranger_trees$predictions

predict.max=apply(predictions, 1, max)

predict.whichmax=apply(predictions, 1, which.max)

predict.class=factor(colnames(predictions)[predict.whichmax])

data_ref=factor(data_valid_red$TARGET)

lvl = union(levels(predict.class), levels(data_ref))

predict.class = factor(predict.class, levels = lvl)

data_ref = factor(data_ref, levels = lvl)

2. Build the confusion matrix

Results_Ranger=confusionMatrix(predict.class,data_ref,mode="everything")

resultname=paste("Results_Ranger",Feature_type,sensor,period,landcovername,samplingmethod,sample_size,t
arget,validation,"_smote",count_thresh,"_numtrees",numtrees,name,format(Sys.time(), "%m%d-
%H%M"),sep="_")

saveRDS(Results_Ranger, paste(workdir,resultname,".rds",sep=""))

print(Results_Ranger$overall)

3. Calculate the accuracy statistics

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 42 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Results_ranger <- readRDS(paste(workdir,resultname,".rds",sep=""))

df <- data.frame(x=factor(c("Overall
accuracy","Kappa",names(Results_ranger$byClass[,"F1"])),levels=(c("Overall
accuracy","Kappa",names(Results_ranger$byClass[order(Results_ranger$byClass[,"Prevalence"],decreasing =
TRUE),"F1"])))),y=c(Results_ranger$overall[1],Results_ranger$overall[2],Results_ranger$byClass[,"F1"]),
prevalence=c(Results_ranger$overall[1],Results_ranger$overall[2],Results_ranger$byClass[,"Prevalence"])
)

index=which(df$prevalence!=0)

df=df[index,]

df$x=as.character(df$x)

df$x[3:nrow(df)]=strapplyc(df$x[3:nrow(df)], "[0-9]{1,4}",simplify=TRUE)

df$area=Declarations_summary$arearatio[match(as.character(df$x),
as.character(Declarations_summary$TARGET))]

df$x=factor(df$x,levels=c(df$x[1],df$x[2],df$x[3:length(df$x)][order(df$area[3:length(df$x)],decreasing
=TRUE)]))

df$cumarea=0

df$cumarea[3:length(df$area)][order(df$x[3:length(df$area)])]=cumsum(df$area[3:length(df$area)][order(d
f$x[3:length(df$area)])])

colors=c('Overall accuracy','Kappa',rep('F-score',nrow(df)-2))

4. Create the plot

p<-ggplot(data=df) +

 geom_bar(aes(x=x, y=y,fill=colors),width=.5,stat="identity", position="dodge") +
geom_point(aes(x=x,y=cumarea),size=1) + scale_y_continuous(limits=c(0,1),breaks=seq(0,1,0.1),expand =
c(0, 0))

q<- p + theme_light() + theme(axis.text.x = element_text(angle = 90, hjust = 1,vjust=0.5)) + xlab("") +
ylab("Performance measure or Relative cumulated area (dots)") + scale_fill_discrete("")

ggsave(paste(workdir,"Accuracy_plot",".jpg",sep=""),q,width = 13, height = 8)

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 43 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

6. Crop diversification use case

6.1 Context
The Sen4CAP “L4A – Crop type product” is used to assess the compliancy of each holding regarding
the crop diversification rules. A “worst case scenario” approach has been implemented to handle the
small parcels and the crop types that cannot be assessed by remote sensing [RD.6].

 The crop diversification monitoring approach relies on two consecutive assessments:

1) First, at the parcel-level, to verify that the crop type declared by the farmer is confirmed by the
satellite signal;

2) Second, at the holding-level, to assess the compliancy with regard to the crop diversification
rules.

Crop diversification regulation

Following the Technical guidance for the On-The-Spot checks of Crop Diversification [RD.7], each
holding belongs to a specific crop diversification category. From the nine categories defined in the
document, two have been left out either because it is a very specific case (holding land to the north of
the 62nd parallel), or because it needs information from last year (which is not currently implemented).
The remained seven categories considered in this use case are presented in Figure 6-1.

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 44 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Figure 6-1 Crop diversification regulations from the Technical guidance for the On-The-Spot checks of Crop

Diversification [RD.7] considered in the Sen4CAP project and correspondence with the Sen4CAP crop
diversification categories

The description of each category considered in the Sen4CAP crop diversification use case and the
corresponding crop diversification rules are detailed in Table 6-1.

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 45 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Table 6-1 Crop diversification categories considered in the Sen4CAP crop diversification use cases

Category Description Crop diversification rules

Category1 TAL between 10 and 30 ha • At least 2 different crop types

• Main crop ≤ 75% of TAL

Category2 TAL greater than 30 ha • At least 3 different crop types

• Main crop ≤ 75% of TAL

• 2 main crops ≤ 95% of TAL

Category3 TGrass and Fallow greater than 75% of TAL Main crop ≤ 75% of remaining AL

Exemption1 TAL less than 10 ha No crop diversification required

Exemption2 TGrass and Fallow greater than 75% of TAL and
remaining AL less than 30 ha

No crop diversification required

Exemption3 PGrass, TGrass and Cwater greater than 75% of
EAA and remaining AL less than 30 ha

No crop diversification required

Exemption4 Cwater = TAL No crop diversification required

TAL = Total Arable Land; AL = Arable Land; EAA = Eligible Agriculture Area; TGrass = Temporary Grassland;
PGrass = Permanent Grassland; Fallow = Land Lying Fallow; Cwater = Crop Under Water

6.2 Preparation
6.2.1 Standardized subsidy application layer with quality flags and

results of the classification

6.2.1.1 Crop diversification class (CTnumDIV) of the prediction 1

The possibility is given to use the prediction of the RF classification in the crop diversification
assessment, when the confidence level of this prediction is above a specific threshold. To do so, and
given the fact that the analysis is done on the crop diversification class and not on the L4A crop type
directly, a new attribute field is added to the subsidy application layer (“CTnumDIV_pred_1”). It
corresponds to the crop diversification class of the L4A crop type predicted by the RF classification with
the highest level of confidence (“CT_pred_1”). It is done using the L4A crop type LUT and the
following query in PostGIS (Algorithm 6-1):

Algorithm 6-1. Update of the subsidy application layer with the crop diversification code corresponding to
prediction 1

update declaration_dataset

set "CTnumDIV_pred_1 " = L4A_lut.CTnumDIV,

from L4A_lut

where L4A_lut.CTnumL4A = declaration_dataset.CT_pred_1;

In this way, the user can decide to use the prediction in the crop diversification process by controlling
the threshold on the confidence level (see section 6.3.1).

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 46 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

6.2.1.2 Export in csv

The subsidy application layer is exported in the csv format (delimiter = ‘,’), with the name
{country}_{year}_DeclSTD_quality_indic_classif_results.csv. It is done with the following query in
PostGIS (Algorithm 6-2):

Algorithm 6-2. Subsidy application layer export in csv
copy declaration_dataset to '\path\{country}_{year}_DeclSTD_quality_indic_classif_results.csv' DELIMITER
',' CSV HEADER;

The csv file contains the following attribute fileds (Table 6-2). The fields in grey are not used in the
crop diversification process and could be removed if the file is too big.

Table 6-2. Content of the csv file exported from the subsidy application layer

Field name Role Default value
[format]

Ori attributes All the original attributes of the original delaration
dataset

[integer, float or string]

Ori_id The initial id from the subsidy application layer [integer or string]

Ori_hold The initial holding id from the subsidy application layer [integer or string]

Ori_crop The initial crop code name from the subsidy application
layer

[integer or string]

NewID New sequential ID of the parcel [integer]

HoldID New sequential ID of the holdings [integer]

CTnum The new croptype code [integer]

CT The crop type name [string]

LC Landcover category [optional] [integer]

GeomValid Identify parcels for which no polygon exists in the
subsidy application layer or with a not valid geometry

[integer, binary]

Duplic Identify parcels that have the exact same geometry as
another

[integer, binary]

Area_meters Measured parcel area using the polygon shape (m²) [integer]

Overlap Identify parcels which overlaps with neighbouring
parcels

[integer, binary]

ShapeInd The shape index [float]

S1pix Indicates the number of used S1 pixels in the parcel [integer]

S2pix Indicates the number of used S2 pixels in the parcel [integer]

CTnumL4A The new crop type code resulting of the grouping of the
CTnum for the classification

[integer]

CTL4A The crop type name associated to CTnumL4A [string]

CTnumDIV The crop diversification class code [integer]

CTDIV The crop diversification class name [string]

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 47 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

EAA Eligible agricultural area: value 1 if the crop type
belongs to this category, value 0 otherwise

[integer, binary]

AL Arable Land: value 1 if the crop type belongs to this
category, value 0 otherwise

[integer, binary]

PGrass Permanent grassland: value 1 if the crop type belongs
to this category, value 0 otherwise

[integer, binary]

TGrass Temporary grassland: value 1 if the crop type belongs to
this category, value 0 otherwise

[integer, binary]

Fallow Fallow land: value 1 if the crop type belongs to this
category, value 0 otherwise

[integer, binary]

Cwater Crop under water: value 1 if the crop type belongs to
this category, value 0 otherwise

[integer, binary]

CT_decl L4A crop type code declared by the farmer [integer]

CT_pred_1 Predicted L4A crop type code from the model with the
highest degree of confidence [integer]

CT_conf_1 Degree of confidence of CT_pred1 [float, between 0 and 1]

CT_pred_2 Predicted L4A crop type code from the model with the
second highest degree of confidence [integer]

CT_conf_2 L4A crop type code declared by the farmer [float, between 0 and 1]

CTnumDIV_pred_1
The crop diversification class code corresponding to the
predicted L4A crop type code from the model with the
highest degree of confidence

[integer]

6.2.2 Crop code LUT

The crop code LUT is the table described in the section 2.1.1.3 (p.14).

6.3 Process
6.3.1 Parameters definition

Some specific parameters are defined before the launch of the crop diversification process. Please find
below the list of the input variables (Table 6-3).

Concerning the conf_threshold parameter, the by-default value is set at 2.0, meaning that the crop
diversification class corresponding to the first prediction of the classification will not be taken into
account in the process. Indeed, only specific users have demanded the possibility to use the first
prediction of the classification; in this case, this parameter has to be defined between 0 and 1. If the
confidence level in the first prediction of the model is above this threshold and the parcel is defined as
not conform, the crop diversification class corresponding to the first prediction is used in the crop
diversification process.

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 48 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Table 6-3 Input variables of the crop diversification process

Input variable Role Default value
[format]

input_csv
Path to the input csv file with the data
{country}_{year}_DeclSTD_quality_indic_classif_results.cs
v

[character]

input_lut Path to the L4A LUT csv file
{country}_{year}_L4A_crop_code_LUT.csv [character]

output_csv Path to the output csv file with the crop diversification
results {country}_{year}_crop_diversification_results.csv [character]

parcel_id_field Field in the input csv file with the data with the parcel id ‘NewID’ [character]

holding_id_field Field in the input csv file with the data with the holding id ‘Ori_hold’
[character]

crop_divers_field_decl
Field in the input csv file with the data with the crop
diversification class corresponding to the declaration of
the farmer

'CTnumDIV'
[character]

crop_divers_field_pred_
1

Field in the input csv file with the data with the crop
diversification class corresponding to the first prediction of
the classification

'CTnumDIV_pred_1
' [character]

area_field Field in the input csv file with the data with the area of the
parcels

'Area_meters'
[character]

conf_threshold Minimum confidence level to use the first prediction of the
classification (from 0 to 1) ‘2.0’ [float]

6.3.2 Conformity assessment at the parcel level

A parcel is assessed as “conform” if the crop type declared by the farmer corresponds to one of the two
outputs of the classification, i.e. with one of the two predictions associated with the two highest degrees
of confidence. The parcel is assessed as “not conform” when the two outputs of the classification are
different from the farmer declaration.

In the case of a not conform parcel, the user can decide to use the predicted crop type for the assessment
at the holding level if the confidence level corresponding to the first prediction is high enough (above a
defined threshold). In this case, the information is also given in the assessment at the parcel level.

A dedicated python script has been developed for the crop diversification use case. Algorithm 6-3
presents the first part of it, which includes the input data import, the definition of the parameters and the
analysis until the conformity assessment at the parcel level.

Algorithm 6-3. Conformity assessment at the parcel level (crop diversification use case)
#!/usr/bin/python

import argparse,csv,os,sys
from collections import defaultdict

input_csv='\path\{country}_{year}_DeclSTD_quality_indic_classif_results.csv'
input_lut='\path\{country}_{year}_L4A_crop_code_LUT'
output_csv='\path\- {country}_{year}_crop_diversification_results.csv’
parcel_id_field='NewID'
holding_id_field='ori_hold'
crop_divers_field_decl='CTnumDIV'

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 49 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

crop_divers_field_pred_1='CTnumDIV_pred_1'
area_field='Area_meters'
conf_threshold=2.0

aggDict = {}
cat = {}
cropdiv = {}
debug = {}

output_fields_int =
['nb_types_c','NewID','CT_decl','CT_pred_1','CT_pred_2','Ori_crop',crop_divers_field_decl,crop_divers_field_pred_1,'n
b_parcels_nc','LC','S2pix','S1pix']
output_fields_float =
[area_field,'area_eaa_c','area_tal_c','area_tempGrass_c','area_permGrass_c','area_llf_c','area_cwater_c','area_remAl_
ex2_c','area_remAl_ex3_c','area_mainCrop_c','area_2mainCrop_c','area_nc','CT_conf_1','CT_conf_2']
output_fields_str = ['Ori_id','ori_hold']
output_fields = ['NewID','Classif_r','CD_cat','CD_diagn','Area_meters']
db_fields =
['nb_types_c','area_eaa_c','area_tal_c','area_tempGrass_c','area_permGrass_c','area_llf_c','area_cwater_c','area_remA
l_ex2_c','area_remAl_ex3_c','area_mainCrop_c','area_2mainCrop_c','nb_parcels_nc','area_nc']
agri_fields = ['ori_hold','CD_cat','CD_diagn']

##--
Create the lists of CTnumDIV in the different categories: Eligible Agriculture Area, Arable Land, Permanent
Grassland, Temporary Grassland, Land Lying Fallow and Crop Under Water

eaa_codes = list()
tal_codes = list()
permGrass_codes = list()
tempGrass_codes = list()
llf_codes = list()
cwater_codes = list()

with open(input_lut) as l_in:
 lut_in = csv.DictReader(l_in, delimiter=',')

 for row in lut_in:
 if row['EAA'] == '1':
 eaa_codes.append(str(row['CTnumDIV']))
 if row['AL'] == '1':
 tal_codes.append(str(row['CTnumDIV']))
 if row['PGrass'] == '1':
 permGrass_codes.append(str(row['CTnumDIV']))
 if row['TGrass'] == '1':
 tempGrass_codes.append(str(row['CTnumDIV']))
 if row['Fallow'] == '1':
 llf_codes.append(str(row['CTnumDIV']))
 if row['Cwater'] == '1':
 cwater_codes.append(str(row['CTnumDIV']))

 eaa_codes=list(set(eaa_codes))
 tal_codes=list(set(tal_codes))
 permGrass_codes=list(set(permGrass_codes))
 tempGrass_codes=list(set(tempGrass_codes))
 llf_codes=list(set(llf_codes))
 cwater_codes=list(set(cwater_codes))

##--
Import data file

with open(input_csv) as f_in:
 csv_in = csv.DictReader(f_in, delimiter=',')

##--
Create column with results of the classif "Classif_r"

 for row in csv_in:
 agri = row[holding_id_field]
 fid = row[parcel_id_field]
 out = dict(row);
 if agri not in aggDict:
 aggDict[agri] = {}
 debug[agri] = {}
 if row['CT_pred_1'] != 'NA' and row['CT_pred_1'] != '':
 if row['CT_decl'] == row['CT_pred_1'] or row['CT_decl'] == row['CT_pred_2']:
 out['Classif_r'] = 'Classified_conform'
 elif float(row['CT_conf_1']) >= conf_threshold:
 out['Classif_r'] = 'Classified_not_conform_prediction_used'

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 50 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 else:
 out['Classif_r'] = 'Classified_not_conform'
 elif row['GeomValid'] == '0' or row['Duplic'] == '0' or row['Overlap'] == '1':
 out['Classif_r'] = 'Not_classified_geometry'
 elif row['LC'] == '' or row['LC'] == '0' or row['LC'] == '5' or row['LC'] == 'NA':
 out['Classif_r'] = 'Not_classified_land_cover'
 elif row['S2pix'] == '' or int(row['S2pix']) <= 2:
 out['Classif_r'] = 'Not_classified_minS2pix'
 elif row['S1pix'] == '' or int(row['S1pix']) == 0:
 out['Classif_r'] = 'Not_classified_noS1pix'
 else:
 out['Classif_r'] = 'Not_classified_undefined'
 aggDict[agri][fid] = out;

6.3.3 Summarized factors by holding

A series of factors are then summarized by holding, using the information given in the L4A LUT
concerning the categories of each crop type (EAA, AL, PGrass, etc.). These summarized factors are
described in Table 6-4. Only the parcels that are classified and conform (and the classified and not
conform parcels with a high level of confidence in the first prediction, if it is activated by the user) are
used for the calculation of the *_c factors (for “conform” parcels). The rest of the parcels are used for
the calculation of the *_nc factors (for “not classified” and “not conform” parcels).

In the case of the use of classified and not conform parcels with a high level of confidence in the first
prediction, the crop diversification class corresponding to the crop type predicted by the classification
is used.

Table 6-4. Summarized factors by holding

Factor Description
area_eaa_c Classified and conform* Eligible Agriculture Area (EAA)

area_tal_c Classified and conform* Total Arable Land (TAL) area

area_tempGrass_c Classified and conform* Temporary Grassland (TGrass) area

area_permGrass_c Classified and conform* Permanent Grassland (PGrass) area

area_llf_c Classified and conform* Land Lying Fallow (Fallow) area

area_cwater_c Classified and conform* Crop Under Water (Cwater) area

area_remAl_ex2_c Classified and conform* remaining area of AL (in the case of exemption
2)

area_remAl_ex3_c Classified and conform* remaining area of AL (in the case of exemption
3)

nb_types_c Number of classified and conform* crop types in AL

area_mainCrop_c Area of the main classified and conform* crop type in AL

area_2mainCrop_c Area of the second main classified and conform* crop type in AL

nb_parcels_nc Number of not classified or classified and not conform** parcels (all
remaining parcels in EAA)

area_nc Not classified parcels or classified or not conform** (all remaining
parcels in EAA)

* and the prediction of the model in the case of the classified and not conform parcels with a high
level of confidence in the first prediction, if it is activated by the user

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 51 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

** except the classified and not conform parcels with a high level of confidence in the first
prediction, if it is activated by the user

Algorithm 6-4 shows the python script that generates the summarized factors by holding.
Algorithm 6-4. Summarized factors by holding (crop diversification use case)

##--
Factors summary

 for agri in aggDict:
 area_eaa_c = 0.
 area_tal_c = 0.
 area_tempGrass_c = 0.
 area_permGrass_c = 0.
 area_llf_c = 0.
 area_cwater_c = 0.
 area_remAl_ex2_c = 0.
 area_remAl_ex3_c = 0.
 types_c = set()
 nb_parcels_nc = 0.
 area_mainCrop_c = 0.
 area_2mainCrop_c = 0.
 area_nc = 0.
 areas_dict = {}

 for fid in aggDict[agri]:
 row = aggDict[agri][fid]
 if row['Classif_r'] == 'Classified_conform':
 if row[crop_divers_field_decl] == '':
 cType = str(row[crop_divers_field_decl])
 else:
 cType = str(int(row[crop_divers_field_decl]))
 elif row['Classif_r'] == 'Classified_not_conform_prediction_used':
 if row[crop_divers_field_decl] == '':
 cType = str(row[crop_divers_field_pred_1])
 else:
 cType = str(int(row[crop_divers_field_pred_1]))
 else:
 if row[crop_divers_field_decl] == '':
 cType = str(row[crop_divers_field_decl])
 else:
 cType = str(int(row[crop_divers_field_decl]))
 area = float(row[area_field])
 if row['Classif_r'] == 'Classified_conform' or row['Classif_r'] == 'Classified_not_conform_prediction_used':
 if cType in eaa_codes:
 area_eaa_c += area
 if cType in tal_codes:
 area_tal_c += area
 types_c.add(cType)
 areas_dict[cType] = area if cType not in areas_dict else area + areas_dict[cType]
 if cType in tempGrass_codes:
 area_tempGrass_c += area
 if cType in permGrass_codes:
 area_permGrass_c += area
 if cType in llf_codes:
 area_llf_c += area
 if cType in cwater_codes:
 area_cwater_c += area
 elif cType in eaa_codes:
 area_nc += area
 nb_parcels_nc += 1

 nb_types_c = len(types_c)
 area_remAl_ex2_c = area_tal_c - area_tempGrass_c - area_llf_c
 area_remAl_ex3_c = area_tal_c - area_tempGrass_c - area_cwater_c

 areas = list(areas_dict.values())
 areas.sort(reverse=True)

 area_mainCrop_c = 0. if len(areas) == 0 else areas[0]
 area_2mainCrop_c = 0. if len(areas) == 0 or len(areas) == 1 else areas[1]

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 52 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

6.3.4 Category assessment at the holding level

Using the summarized factors by holding, the first part of the assessment is to define to which crop
diversification category the holding belongs. The *_c factors are used to predefine to which of these 7
categories each holding belongs. Then, “worst case scenarios” are applied to check if the *_nc factors
can have an impact on the definition of the category or not. If it is not the case, the category is confirmed;
it corresponds to one of the 7 defined categories. If the *_nc factors can have an impact on the definition
of the holding category, “worst case scenarios” are again applied to check all the possible categories of
the holding. The field “CD_cat” (for crop diversification category) gives the results of the crop
diversification category assessment (Table 6-5).

Table 6-5. Crop diversification category assessment

CD_cat Description
Exemption1 TAL less than 10 ha

Exemption2 TGrass and Fallow greater than 75% of TAL and remaining AL less
than 30 ha

Exemption3 PGrass, TGrass and Cwater greater than 75% of EAA and remaining
AL less than 30 ha

Exemption4 Cwater = TAL

Category1 TAL between 10 and 30 ha

Category2 TAL greater than 30 ha

Category3 TGrass and Fallow greater than 75% of TAL

Category1_or_2 Holding belongs to Category1 or Category2 (see above)

Category1_or_3 Holding belongs to Category1 or Category3 (see above)

Category2_or_3 Holding belongs to Category2 or Category3 (see above)

Category1_2_or_3 Holding belongs to Category1, Category2 or Category3 (see above)

Exemption_or_Category1 Holding belongs to at least one of the Exemption or Category1 (see
above)

Exemption_or_Category2 Holding belongs to at least one of the Exemption or Category2 (see
above)

Exemption_or_Category3 Holding belongs to at least one of the Exemption or Category3 (see
above)

Exemption_or_Category1_or_2 Holding belongs to at least one of the Exemption or Category1 or
Category2 (see above)

Exemption_or_Category1_or_3 Holding belongs to at least one of the Exemption or Category1 or
Category3 (see above)

Exemption_or_Category2_or_3 Holding belongs to at least one of the Exemption or Category2 or
Category3 (see above)

Exemption_or_Category1_2_or_3 Holding belongs to at least one of the Exemption or Category1 or
Category2 or Category3 (see above)

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 53 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Algorithm 6-5 presents the python script that performs the category assessment.
Algorithm 6-5. Crop diversification category assessment (crop diversification use case)

##--
Define the crop diversification category

 cat[agri] = 'Exemption_or_Category1_2_or_3'

 if area_nc == 0:

 if area_tal_c < 100000:
 cat[agri] = 'Exemption1'

 elif area_tempGrass_c + area_llf_c > 0.75 * area_tal_c and area_remAl_ex2_c <= 300000:
 cat[agri] = 'Exemption2'

 elif area_permGrass_c + area_tempGrass_c + area_cwater_c > 0.75 * area_eaa_c and area_remAl_ex3_c <= 300000:
 cat[agri] = 'Exemption3'

 elif area_cwater_c == area_tal_c:
 cat[agri] = 'Exemption4'

 elif area_tempGrass_c + area_llf_c > 0.75 * area_tal_c:
 cat[agri] = 'Category3'

 elif area_tal_c > 100000 and area_tal_c <= 300000:
 cat[agri] = 'Category1'

 elif area_tal_c > 300000:
 cat[agri] = 'Category2'

 elif area_nc != 0:

 if area_tal_c + area_nc < 100000:
 cat[agri] = 'Exemption1'

 elif area_tempGrass_c + area_llf_c > 0.75 * (area_tal_c + area_nc) and area_remAl_ex2_c + area_nc <= 300000:
 cat[agri] = 'Exemption2'

 elif area_permGrass_c + area_tempGrass_c + area_cwater_c > 0.75 *(area_eaa_c + area_nc) and area_remAl_ex3_c +
area_nc <= 300000:
 cat[agri] = 'Exemption3'

 elif area_tal_c < 100000 or (area_tempGrass_c + area_llf_c > 0.75 * area_tal_c and area_remAl_ex2_c <= 300000)
or (area_permGrass_c + area_tempGrass_c + area_cwater_c > 0.75 * area_eaa_c and area_remAl_ex3_c <= 300000) or
(area_cwater_c == area_tal_c):

 if area_tempGrass_c + area_llf_c > 0.75 * area_tal_c:

 if area_tempGrass_c + area_llf_c > 0.75 * (area_tal_c + area_nc):
 cat[agri] = 'Exemption_or_Category3'

 elif area_tal_c + area_nc >= 100000 and area_tal_c + area_nc < 300000:
 cat[agri] = 'Exemption_or_Category1_or_3'

 elif area_tal_c >= 300000:
 cat[agri] = 'Exemption_or_Category2_or_3'

 elif area_tal_c + area_nc >= 300000:
 cat[agri] = 'Exemption_or_Category1_2_or_3'

 elif area_tempGrass_c + area_llf_c + area_nc <= 0.75 * (area_tal_c + area_nc):

 if area_tal_c + area_nc >= 100000 and area_tal_c + area_nc < 300000:
 cat[agri] = 'Exemption_or_Category1'

 elif area_tal_c >= 300000:
 cat[agri] = 'Exemption_or_Category2'

 elif area_tal_c + area_nc >= 300000:
 cat[agri] = 'Exemption_or_Category1_or_2'

 elif area_tal_c + area_nc >= 100000 and area_tal_c + area_nc < 300000:
 cat[agri] = 'Exemption_or_Category1_or_3'

 elif area_tal_c >= 300000:
 cat[agri] = 'Exemption_or_Category2_or_3'

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 54 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 elif area_tal_c + area_nc >= 300000:
 cat[agri] = 'Exemption_or_Category1_2_or_3'

 elif area_tal_c > 100000 and ((area_tempGrass_c + area_llf_c + area_nc <= 0.75 * (area_tal_c + area_nc)) or
(area_tempGrass_c + area_llf_c + area_nc > 0.75 * (area_tal_c + area_nc) and area_remAl_ex2_c > 300000) or
(area_tempGrass_c + area_llf_c > 0.75 * (area_tal_c + area_nc) and area_remAl_ex2_c + area_nc > 300000) or
(area_tempGrass_c + area_llf_c > 0.75 * area_tal_c and area_remAl_ex2_c > 300000)) and ((area_permGrass_c +
area_tempGrass_c + area_cwater_c + area_nc <= 0.75 * (area_eaa_c + area_nc)) or (area_permGrass_c + area_tempGrass_c
+ area_cwater_c > 0.75 * area_eaa_c and area_remAl_ex3_c > 300000) or (area_permGrass_c + area_tempGrass_c +
area_cwater_c + area_nc > 0.75 * (area_eaa_c + area_nc) and area_remAl_ex3_c > 300000)) and (area_cwater_c !=
area_tal_c):

 if area_tempGrass_c + area_llf_c > 0.75 * area_tal_c:

 if area_tempGrass_c + area_llf_c > 0.75 * (area_tal_c + area_nc):
 cat[agri] = 'Category3'

 elif area_tal_c + area_nc >= 100000 and area_tal_c + area_nc < 300000:
 cat[agri] = 'Category1_or_3'

 elif area_tal_c >= 300000:
 cat[agri] = 'Category2_or_3'

 elif area_tal_c + area_nc >= 300000:
 cat[agri] = 'Category1_2_or_3'

 elif area_tempGrass_c + area_llf_c + area_nc <= 0.75 * (area_tal_c + area_nc):

 if area_tal_c + area_nc >= 100000 and area_tal_c + area_nc < 300000:
 cat[agri] = 'Category1'

 elif area_tal_c >= 300000:
 cat[agri] = 'Category2'

 elif area_tal_c + area_nc >= 300000:
 cat[agri] = 'Category1_or_2'

 elif area_tal_c + area_nc >= 100000 and area_tal_c + area_nc < 300000:
 cat[agri] = 'Category1_or_3'

 elif area_tal_c >= 300000:
 cat[agri] = 'Category2_or_3'

 elif area_tal_c + area_nc >= 300000:
 cat[agri] = 'Category1_2_or_3'

6.3.5 Crop diversification assessment at the holding level

In the case of the exemption categories, no crop diversification is needed. For the other categories,
different rules have to be respected to be compliant regarding crop diversification. Again, first the *_c
factors are used to check the compliancy of the holding regarding crop diversification. Then, “worst
case scenarios” are applied to check if the *_nc factors can impact or not this compliancy assessment.
If it is not the case, the holding is defined as compliant or not compliant regarding crop diversification.
If it is the case, there is not enough information to assess the holding compliancy regarding crop
diversification. The field “CD_diagn” (for crop diversification diagnostic) gives the results of the crop
diversification assessment (Table 6-6).

Table 6-6. Crop diversification compliancy assessment

CD_diagn Description
Compliant Holding compliant regarding crop diversification

Not_compliant Holding not compliant regarding crop diversification

Not_required Holding with no crop diversification required

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 55 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Missing_info Not enough information to assess the holding compliancy regarding crop
diversification

When the category assessment defines different possible categories for a holding, the different
corresponding rules are checked. The holding will be assessed as compliant (or not compliant) if it is
compliant (or not compliant) in all possible categories. If it is not the case, not enough information are
available to assess the holding compliancy regarding crop diversification.

Algorithm 6-6 shows the python script which performs the crop diversification assessment and creates
the output files described in the next section.

Algorithm 6-6. Crop diversification assessment (crop diversification use case)
##--
Check crop diversification rules

 if cat[agri] == 'Exemption1' or cat[agri] == 'Exemption2' or cat[agri] == 'Exemption3' or cat[agri] ==
'Exemption4':
 cropdiv[agri] = 'Not_required'

 elif cat[agri] == 'Category1':
 if nb_types_c >= 2 and area_mainCrop_c + area_nc <= 0.75*(area_tal_c + area_nc):
 cropdiv[agri] = 'Compliant'
 elif nb_types_c + nb_parcels_nc < 2 or area_mainCrop_c > 0.75*(area_tal_c + area_nc):
 cropdiv[agri] = 'Not_compliant'
 else:
 cropdiv[agri] = 'Missing_info'

 elif cat[agri] == 'Category2':
 if nb_types_c >= 3 and area_mainCrop_c + area_nc <= 0.75*(area_tal_c + area_nc) and area_mainCrop_c +
area_2mainCrop_c + area_nc <= 0.95 *(area_tal_c + area_nc):
 cropdiv[agri] = 'Compliant'
 elif nb_types_c + nb_parcels_nc < 3 or area_mainCrop_c > 0.75*(area_tal_c + area_nc) or area_mainCrop_c +
area_2mainCrop_c > 0.95 *(area_tal_c + area_nc):
 cropdiv[agri] = 'Not_compliant'
 else:
 cropdiv[agri] = 'Missing_info'

 elif cat[agri] == 'Category3':
 if area_mainCrop_c + area_nc <= 0.75*(area_remAl_ex2_c + area_nc):
 cropdiv[agri] = 'Compliant'
 elif area_mainCrop_c > 0.75*(area_remAl_ex2_c + area_nc):
 cropdiv[agri] = 'Not_compliant'
 else:
 cropdiv[agri] = 'Missing_info'

 elif cat[agri] == 'Category1_or_2':
 if (nb_types_c >= 2 and area_mainCrop_c + area_nc <= 0.75*(area_tal_c + area_nc)) and (nb_types_c >= 3 and
area_mainCrop_c + area_nc <= 0.75*(area_tal_c + area_nc) and area_mainCrop_c + area_2mainCrop_c + area_nc <= 0.95
*(area_tal_c + area_nc)):
 cropdiv[agri] = 'Compliant'
 elif (nb_types_c + nb_parcels_nc < 2 or area_mainCrop_c > 0.75*(area_tal_c + area_nc)) and (nb_types_c +
nb_parcels_nc < 3 or area_mainCrop_c > 0.75*(area_tal_c + area_nc) or area_mainCrop_c + area_2mainCrop_c > 0.95
*(area_tal_c + area_nc)):
 cropdiv[agri] = 'Not_compliant'
 else:
 cropdiv[agri] = 'Missing_info'

 elif cat[agri] == 'Category1_or_3':
 if (nb_types_c >= 2 and area_mainCrop_c + area_nc <= 0.75*(area_tal_c + area_nc)) and (area_mainCrop_c +
area_nc <= 0.75*(area_remAl_ex2_c + area_nc)):
 cropdiv[agri] = 'Compliant'
 elif (nb_types_c + nb_parcels_nc < 2 or area_mainCrop_c > 0.75*(area_tal_c + area_nc)) and (area_mainCrop_c >
0.75*(area_remAl_ex2_c + area_nc)):
 cropdiv[agri] = 'Not_compliant'
 else:
 cropdiv[agri] = 'Missing_info'

 elif cat[agri] == 'Category2_or_3':
 if (nb_types_c >= 3 and area_mainCrop_c + area_nc <= 0.75*(area_tal_c + area_nc) and area_mainCrop_c +
area_2mainCrop_c + area_nc <= 0.95 *(area_tal_c + area_nc)) and (area_mainCrop_c + area_nc <= 0.75*(area_remAl_ex2_c
+ area_nc)):
 cropdiv[agri] = 'Compliant'

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 56 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 elif (nb_types_c + nb_parcels_nc < 3 or area_mainCrop_c > 0.75*(area_tal_c + area_nc) or area_mainCrop_c +
area_2mainCrop_c > 0.95 *(area_tal_c + area_nc)) and (area_mainCrop_c > 0.75*(area_remAl_ex2_c + area_nc)):
 cropdiv[agri] = 'Not_compliant'
 else:
 cropdiv[agri] = 'Missing_info'

 elif cat[agri] == 'Category1_2_or_3':
 if (nb_types_c >= 2 and area_mainCrop_c + area_nc <= 0.75*(area_tal_c + area_nc)) and (nb_types_c >= 3 and
area_mainCrop_c + area_nc <= 0.75*(area_tal_c + area_nc) and area_mainCrop_c + area_2mainCrop_c + area_nc <= 0.95
(area_tal_c + area_nc)) and (area_mainCrop_c + area_nc <= 0.75(area_remAl_ex2_c + area_nc)):
 cropdiv[agri] = 'Compliant'
 elif (nb_types_c + nb_parcels_nc < 2 or area_mainCrop_c > 0.75*(area_tal_c + area_nc)) and (nb_types_c +
nb_parcels_nc < 3 or area_mainCrop_c > 0.75*(area_tal_c + area_nc) or area_mainCrop_c + area_2mainCrop_c > 0.95
(area_tal_c + area_nc)) and (area_mainCrop_c > 0.75(area_remAl_ex2_c + area_nc)):
 cropdiv[agri] = 'Not_compliant'
 else:
 cropdiv[agri] = 'Missing_info'

 elif cat[agri] == 'Exemption_or_Category1_or_2':
 if (nb_types_c >= 2 and area_mainCrop_c + area_nc <= 0.75*(area_tal_c + area_nc)) and (nb_types_c >= 3 and
area_mainCrop_c + area_nc <= 0.75*(area_tal_c + area_nc) and area_mainCrop_c + area_2mainCrop_c + area_nc <= 0.95
*(area_tal_c + area_nc)):
 cropdiv[agri] = 'Compliant'
 else:
 cropdiv[agri] = 'Missing_info'

 elif cat[agri] == 'Exemption_or_Category1_or_3':
 if (nb_types_c >= 2 and area_mainCrop_c + area_nc <= 0.75*(area_tal_c + area_nc)) and (area_mainCrop_c +
area_nc <= 0.75*(area_remAl_ex2_c + area_nc)):
 cropdiv[agri] = 'Compliant'
 else:
 cropdiv[agri] = 'Missing_info'

 elif cat[agri] == 'Exemption_or_Category2_or_3':
 if (nb_types_c >= 3 and area_mainCrop_c + area_nc <= 0.75*(area_tal_c + area_nc) and area_mainCrop_c +
area_2mainCrop_c + area_nc <= 0.95 *(area_tal_c + area_nc)) and (area_mainCrop_c + area_nc <= 0.75*(area_remAl_ex2_c
+ area_nc)):
 cropdiv[agri] = 'Compliant'
 else:
 cropdiv[agri] = 'Missing_info'

 elif cat[agri] == 'Exemption_or_Category1_2_or_3':
 if (nb_types_c >= 2 and area_mainCrop_c + area_nc <= 0.75*(area_tal_c + area_nc)) and (nb_types_c >= 3 and
area_mainCrop_c + area_nc <= 0.75*(area_tal_c + area_nc) and area_mainCrop_c + area_2mainCrop_c + area_nc <= 0.95
(area_tal_c + area_nc)) and (area_mainCrop_c + area_nc <= 0.75(area_remAl_ex2_c + area_nc)):
 cropdiv[agri] = 'Compliant'
 else:
 cropdiv[agri] = 'Missing_info'

 elif cat[agri] == 'Undefined':
 cropdiv[agri] = 'Missing_info'

 else:
 cropdiv[agri] = 'Missing_info'

##--
Debug factors

 debug[agri]['nb_types_c'] = nb_types_c
 debug[agri]['area_eaa_c'] = area_eaa_c
 debug[agri]['area_tal_c'] = area_tal_c
 debug[agri]['area_tempGrass_c'] = area_tempGrass_c
 debug[agri]['area_permGrass_c'] = area_permGrass_c
 debug[agri]['area_llf_c'] = area_llf_c
 debug[agri]['area_remAl_ex2_c'] = area_remAl_ex2_c
 debug[agri]['area_remAl_ex3_c'] = area_remAl_ex3_c
 debug[agri]['area_mainCrop_c'] = area_mainCrop_c
 debug[agri]['area_2mainCrop_c'] = area_2mainCrop_c
 debug[agri]['nb_parcels_nc'] = nb_parcels_nc
 debug[agri]['area_nc'] = area_nc
 debug[agri]['area_cwater_c'] = area_cwater_c

##--
Write outputs

 with open(output_csv,'w') as f_out, open(output_csv.replace('.csv','_holding.csv'),'w') as f_out_holding:
 csv_out = csv.DictWriter(f_out, fieldnames=output_fields)
 csv_out.writeheader()

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 57 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 csv_out_holding = csv.DictWriter(f_out_holding, fieldnames=agri_fields + db_fields)
 csv_out_holding.writeheader()

 for agri in aggDict:
 for fid in aggDict[agri]:
 row = aggDict[agri][fid]
 newrow = {}
 for field in output_fields:
 if field in output_fields_int:
 if row[field] == '':
 newrow[field] = 0
 else:
 newrow[field] = int(float(row[field]))
 elif field in output_fields_float:
 if row[field] == '':
 newrow[field] = 0
 else:
 newrow[field] = float(row[field])
 elif field in output_fields_str:
 newrow[field] = str(row[field])
 newrow['Classif_r'] = row['Classif_r']
 newrow['CD_cat'] = cat[agri]
 newrow['CD_diagn'] = cropdiv[agri]
 csv_out.writerow(newrow)

 for field in db_fields:
 newrow[field] = debug[agri][field]

 for agri in aggDict:
 listFields = aggDict[agri]
 firstKey = aggDict[agri].keys()[0]
 row = aggDict[agri][firstKey]
 newrow = {}
 for field in agri_fields:
 if field in output_fields_int:
 if row[field] == '':
 newrow[field] = 0
 else:
 newrow[field] = int(float(row[field]))
 elif field in output_fields_float:
 if row[field] == '':
 newrow[field] = 0.0
 else:
 newrow[field] = float(row[field])
 elif field in output_fields_str:
 newrow[field] = str(row[field])
 newrow['CD_cat'] = cat[agri]
 newrow['CD_diagn'] = cropdiv[agri]
 for field in db_fields:
 newrow[field] = debug[agri][field]
 csv_out_holding.writerow(newrow)

print('done')

6.4 Output
Two crop diversification outputs are created:

- crop_div.csv: it contains the results by parcel;
- crop_div_holding.csv: it contains the results by holding.

The content of the two crop diversification outputs are detailed in Table 6-7 and Table 6-8.
Table 6-7. Content of the crop diversification output crop_div.csv

Output
variable Role Default value

[format]

NewID New sequential ID of the parcel [integer]

Classif_r Results of the conformity assessment at the parcel level [character]

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 58 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

CD_cat Results of the category assessment at the holding level [character]

CD_diagn Results of the crop diversification rules assessment at the holding
level [character]

Table 6-8. Content of the crop diversification output crop_div_holding.csv

Output variable Role Default value
[format]

Ori_hold The initial holding id from the subsidy application layer [integer or
string]

CD_cat Results of the category assessment at the holding level [character]

CD_diagn Results of the crop diversification rules assessment at the holding
level [character]

nb_types_c Number of different crop types of AL confirmed by the
classification, by holding [integer]

area_eaa_c Area of the EAA confirmed by the classification, by holding [float]

area_tal_c Area of the TAL confirmed by the classification, by holding [float]

area_tempGrass_c Area of the temporary grassland confirmed by the classification,
by holding [float]

area_permGrass_c Area of the permanent grassland confirmed by the classification,
by holding [float]

area_llf_c Area of the land lying fallow confirmed by the classification, by
holding [float]

area_cwater_c Area of the crops under water confirmed by the classification, by
holding [float]

area_remAl_ex2_c Area of the remaining AL in the case of exemption 2 confirmed by
the classification, by holding [float]

area_remAl_ex3_c Area of the remaining AL in the case of exemption 3 confirmed by
the classification, by holding [float]

area_mainCrop_c Area of the main crop confirmed by the classification, by holding [float]

area_2mainCrop_c Area of the second main crop confirmed by the classification, by
holding [float]

nb_parcels_nc Number of remaining parcels not confirmed by the classification
(declared as EAA) [integer]

area_nc Area of the remaining area not confirmed by the classification
(declared as EAA) [float]

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 59 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

7. Output

7.1 Results of the crop type mapping
The results are delivered in geopackage (CropType.gpkg) and shapefile (CropType.shp) formats,
projected in the national projection, as well as in a csv (CropType.csv). The list of attribute fields in
these outputs is detailed in Table 7-1.

Table 7-1. Content of the output shapefile export

Field name Role Default value [format]

Attribute fields
from subsidy
application layer

All the attribute fields from the standardized
subsidy application layer with quality flags (detailed
in Table 2-2)

[integer, float or string]

CT_decl L4A crop type code declared by the farmer [integer]

CT_pred_1 Predicted L4A crop type code from the model with
the highest degree of confidence [integer]

CT_conf_1 Degree of confidence of CT_pred1 [float, between 0 and 1]

CT_pred_2 Predicted L4A crop type code from the model with
the second highest degree of confidence [integer]

CT_conf_2 L4A crop type code declared by the farmer [float, between 0 and 1]

7.2 Results of the crop diversification assessment
Two crop diversification outputs are created:

- crop_div.csv: it contains the results by parcel;
- crop_div_holding.csv: it contains the results by holding.

The content of the two crop diversification outputs are detailed in Table 7-2 and Table 7-3.
Table 7-2. Content of the crop diversification output crop_div.csv

Output
variable Role Default value

[format]

NewID New sequential ID of the parcel [integer]

Classif_r Results of the conformity assessment at the parcel level [character]

CD_cat Results of the category assessment at the holding level [character]

CD_diagn Results of the crop diversification rules assessment at the holding
level [character]

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 60 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Table 7-3. Content of the crop diversification output crop_div_holding.csv

Output variable Role Default value
[format]

Ori_hold The initial holding id from the subsidy application layer [integer or
string]

CD_cat Results of the category assessment at the holding level [character]

CD_diagn Results of the crop diversification rules assessment at the holding
level [character]

nb_types_c Number of different crop types of AL confirmed by the
classification, by holding [integer]

area_eaa_c Area of the EAA confirmed by the classification, by holding [float]

area_tal_c Area of the TAL confirmed by the classification, by holding [float]

area_tempGrass_c Area of the temporary grassland confirmed by the classification,
by holding [float]

area_permGrass_c Area of the permanent grassland confirmed by the classification,
by holding [float]

area_llf_c Area of the land lying fallow confirmed by the classification, by
holding [float]

area_cwater_c Area of the crops under water confirmed by the classification, by
holding [float]

area_remAl_ex2_c Area of the remaining AL in the case of exemption 2 confirmed by
the classification, by holding [float]

area_remAl_ex3_c Area of the remaining AL in the case of exemption 3 confirmed by
the classification, by holding [float]

area_mainCrop_c Area of the main crop confirmed by the classification, by holding [float]

area_2mainCrop_c Area of the second main crop confirmed by the classification, by
holding [float]

nb_parcels_nc Number of remaining parcels not confirmed by the classification
(declared as EAA) [integer]

area_nc Area of the remaining area not confirmed by the classification
(declared as EAA) [float]

7.3 Validation results
The validation results of the classication are contained in a series of files:

• Accuracy_metrics_{processing_time}.csv: the Overall Accuracy and Kappa value of the
classification;

• Confusion_matrix_{processing_time}.csv: the results of the confusion matrix, and the
calculation of the producer’s and user’s accuracy for each classified crop type;

Ref Sen4CAP_DDF-ATBD-L4A_v1.3

Issue Page Date

1.3 61 01/04/2021

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

• Accuracy_metrics_plot_{processing_time}.csv: plot with the Overall Accuracy and Kappa
value, as well as the F-score values of each classified crop type; the crop types are sorted by
area;

• Confusion_producer_{processing_time}.csv: for all the classified crop types, the 3 crop types
with which the parcels were the most confused, regaring producer’s accuracy;

• Confusion_user_{processing_time}.csv: for all the classified crop types, the 3 crop types with
which the parcels were the most confused, regaring user’s accuracy.

7.4 Classification related data
A series of data are also provided related to the classification:

• Crop_types_summary_{processing_time}.csv: lists all the original crop types and reports if the
crop type was classified or not, and if it is the case with which strategy the calibration dataset
was defined;

• Parcels_classified_with_predictions_{processing_time}.csv: results of the classification only
for the classified parcels (NewID, AreaDeclared, S1Pix, S2Pix, CTnumL4A, CTL4A, LC,
CT_decl, CT_pred_1, CT_conf_1, CT_pred_2, CT_conf_2);

• Parcels_all_with_predictions_{processing_time}.csv: results of the classification for all parcels
(NewID, AreaDeclared, S1Pix, S2Pix, CTnumL4A, CTL4A, LC, CT_decl, CT_pred_1,
CT_conf_1, CT_pred_2, CT_conf_2);

• Data_calibration_final_before_smote_{processing_time}.csv: all the markers used for the
calibration of the classification, before SMOTE;

• Data_calibration_final_after_smote_{processing_time}.csv: all the markers used for the
calibration of the classification, after SMOTE;

• Data_validation_final_{processing_time}.csv: all the markers used for validation;
• Random_Forest_Model_{processing_time}.rds: Random Forest model.

	1. Logical model – overview of the system
	2. Data preparation
	2.1 Subsidy application layer
	2.1.1 Input data
	2.1.1.1 Standardized subsidy application layer with quality flags
	2.1.1.2 Parcels raster layers
	2.1.1.3 Crop code LUT

	2.1.2 L4A crop code and crop diversification information

	2.2 Optical data
	2.3 SAR data
	2.3.1 Mosaicking and formatting
	2.3.2 Gap-filling consideration

	3. Feature extraction
	3.1 Optical data
	3.1.1 Feature extraction
	3.1.2 Parcel level statistics extraction

	3.2 SAR data
	3.2.1 Ratio VV/VH
	3.2.2 Feature concatenation
	3.2.3 Temporal features
	3.2.3.1 Backscattering intensity temporal features
	3.2.3.2 Coherence temporal features

	3.2.4 Parcel level statistics extraction

	4. Object classification
	4.1 Format object feature statistics
	4.1.1 Import object feature statistics: from ‘line raster’ to csv
	4.1.2 Features concatenation

	4.2 Select parcels for training, classification and validation
	4.2.1 Non-assessed parcels
	4.2.2 Parcels used for calibration and validation
	4.2.2.1 Selecting the best parcels
	4.2.2.2 Splitting parcels for training and validation

	4.3 Apply SMOTE algorithm to synthetically over-sample the minority classes
	4.4 Train the Random Forest model
	4.5 Classify and format the classification output table
	4.6 Update the subsidy application layer with the classification results

	5. Validation
	6. Crop diversification use case
	6.1 Context
	6.2 Preparation
	6.2.1 Standardized subsidy application layer with quality flags and results of the classification
	6.2.1.1 Crop diversification class (CTnumDIV) of the prediction 1
	6.2.1.2 Export in csv

	6.2.2 Crop code LUT

	6.3 Process
	6.3.1 Parameters definition
	6.3.2 Conformity assessment at the parcel level
	6.3.3 Summarized factors by holding
	6.3.4 Category assessment at the holding level
	6.3.5 Crop diversification assessment at the holding level

	6.4 Output

	7. Output
	7.1 Results of the crop type mapping
	7.2 Results of the crop diversification assessment
	7.3 Validation results
	7.4 Classification related data

