

# Sentinels for Agricultural Monitoring Sen4CAP – Concept & Goals

Benjamin Koetz

European Space Agency, Earth Observation Directorate

ESA UNCLASSIFIED - For Official Use

#### Sentinels Looking after Agriculture





## **Copernicus Space Component**

Long term continuity space observations



esa

## Sentinels for Agricultural Dynamics



## Majority of Europe >2 day revisit

Majority of Europe >3 day revisit



#### European Collaboration – Technology meets Policy







## common agricultural policy



ESA UNCLASSIFIED - For Official Use ESA | 28/11/2017 | Slide 5

## Sen4CAP: R&D for Common Agricultural Policy



#### **Sen4CAP Objectives:**

- Provide evidence how Sentinel derived information can support the modernization and simplification of the CAP in the post 2020 timeframe
- Provide validated algorithms, products, workflows and best practices for agriculture monitoring relevant for the management of the CAP

#### Sen4CAP Implementation: (2017-2019)

- Collaboration with DG-AGRI, DG-GROW, DG-JRC, and national Paying Agencies
- Responding to the request from DG-AGRI & DG-GROW



## Sen4CAP: R&D for Common Agricultural Policy

## esa

#### **Sen4CAP Objectives:**

- Provide evidence how Sentinel derived information can support the modernization and simplification of the CAP in the post 2020 timeframe
- Provide validated algorithms, products, workflows and best practices for agriculture monitoring relevant for the management of the CAP

#### Sen4CAP Implementation: (2017-2019)

- Collaboration with DG-AGRI, and national Paying Agencies
- Responding to the request from DG-AGRI & DG-GROW





| ect: | Cooperation between the European Commission and the Europea<br>Space Agency (ESA) on the follow-up of the CzechAgri study |
|------|---------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                           |

| 57 | and | the   | European  | Commission   | have    | an int | erest  | in j |   |
|----|-----|-------|-----------|--------------|---------|--------|--------|------|---|
| sk | ome | nt of | Earth Obs | ervation (EO | ) use a | nd re  | loted. | can  | i |

DG-GROW,

Fallowing frees promising results, is would be extremely useful to further explore-inthe cooperation with the Baregues Commission. Be capabilized on the Copencius of the Copencius of the Copencius of the Copencius of the Copencius CAP and the exponentiates of EOD from space for anyopering, the Isagerand Mathematical Copencius of Copencius of the Copencius of the Copencius properties and the Copencius of the Copencius of the Copencius of the Isagerand Structure (CAS), the Isagerand Structure of the Copencius of the Structure of the Copencius of the Copencius of the Copencius of the structure of the Copencius of the Isagerand Structure of the Copencius of the structure of the Copencius of the Isagerand Structure of the Copencius of the structure of the Copencius of the Isagerand Structure of the Copencius of the structure of the Isagerand Structure of the Isagerand Structure of the Copencius of the structure of the Isagerand Structure of the Isagerand

Vith this letter, we acknowledge and welcome ESA's readiness to continue this effort by onducting two or three follow-up pilot studies to the CzechAgri project in preparation of the CAP 2020 reform together with the main stukeholders (DG AGRI, DG GROW and G JRC) and the national Paying Agencies.

Mr. Josef Aschbacher Macrotor of Earth Observation Programmes imopean Space Agency fra Galiko Galikei Saella postale 64 00044 Frascati - Italy

We have taken great interest in the results of the CzechAgri study that was jointly initiated in December 2015 by ESA, DG JRC and SZIF (Czech Paying Agency) and successfully implemented thanks to ESA funding and a technical steering involving DG AGRI.

## Endorsement of Copernicus for Use within the CAP



Commissioner P. Hogan: "...already Paying Agencies using data of the Sentinels ... ESA has launched a tender Sen4CAP which will provide us useful knowledge and further possibilities on how we use Sentinel data in the context of the CAP "

## Sen4CAP – Expertise, Technology & Collaboration Cesa





## Sen4CAP Pilot Countries – EU Agricultural Landscape CSA



#### From Satellites to Compliance Decision



Sentinel-1 & -2





## Sen4CAP - 1<sup>st</sup> Evidence for CAP Monitoring Approach CSA

#### **Benefits:**

- Continuous and timely allowing for monitoring & preventive approach
- Wall-to-wall coverage 100% sample at national scale
- Physical temporal markers objective & transparent monitoring
- Global & open EO data EU wide consistent & comparable approach

#### **Performance:**

- EU Heterogeneity: tested for 6 countries landscape, field size, LPIS
- Reliability: validated over representative test sites
- Compliancy: Demonstration based on IACS use cases
- Efficiency: automation & cloud computing allows for economies of scale

ESA UNCLASSIFIED - For Official Use

ESA | 28/11/2017 | Slide 14

## Sen4CAP: An European Effort to prepare for CAP2020 CSA

- Open & operational Sentinel time series enable CAP monitoring approach
- Integration in PA operations for IACS implementation essential
- Sen4CAP tools support automated, E2E monitoring at large scale
- Cloud computing on DIAS will allow for national to European up-scaling
- Open source approach for direct and customizable uptake & sharing



## Sen4CAP – Time Planning & Status



esa

#### User Requirements collection

1. Analysis existing **recommendations** coming from the **CzechAgri pilot study** and the different **PA workshops** from the last months

2. Design of a **questionnaire** dedicated to the PAs formally involved in the project + **interview** of these PAs

3. Organize a **User Requirement Workshop** in which the user requirements will be discussed actively with all bodies involved



## **IACS Use Cases Definition**

- User workshop, Brussels, 2017 July 20<sup>th</sup>
- Interactions with PAs and 3 EC-DGs
- User Requirements in terms of IACS use cases
  - Emphasis on the usefulness of the products to support decision about farmers' compliance
  - o Defined at the level of concrete use cases
  - o Traffic Light Approach



| -SΔ | LINCI | ASST | TED | - For | Official | LISA |
|-----|-------|------|-----|-------|----------|------|
|     | ONCL  | 7221 |     | 101   | Official | 030  |

| Use case                                                                                 | Pilot country interested                                |
|------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Crop diversification                                                                     | All                                                     |
| Permanent grassland<br>identification / Comparison with<br>permanent grassland reference | All                                                     |
| EFA-Land lying fallow                                                                    | Czech Republic, Italy,<br>Lithuania, Spain              |
| EFA-Catch crops                                                                          | Czech Republic,<br>Lithuania, Netherlands,<br>Romania   |
| EFA-Nitrogen-fixing crops                                                                | Czech Republic , Italy,<br>Lithuania, Romania,<br>Spain |
| Land abandonment                                                                         | All                                                     |
| Interactive visualization                                                                | All (national scale)                                    |
| LPIS update                                                                              | All                                                     |
| Claimless system                                                                         | All                                                     |

+

## IACS Use Cases Definition

- User workshop, Brussels, 2017 July 20th
- Interactions with PAs and 3 EC-DGs
- User Requirements in terms of IACS use cases
  - Emphasis on the usefulness of the products to support decision about farmers' compliance
  - o Defined at the level of concrete use cases
  - o Traffic Light Approach





ESA UNCLASSIFIED - For Official Use



## Workplan for use case demonstration

#### **Proof of concept**

- ✓ Deliver a proof of concept through
  - Fast track prototypes
  - $\circ\,$  Iteration with PAs for final prototypes
- ✓ Pilot Review to provide early evidence of Sentinels benefit
- ✓ 2016 & 2017
- ✓ 10.000 km<sup>2</sup> test site + national coverage

#### Full scale demonstration

- ✓ Demonstration products and use case implementation
- ✓ 2018 & 2019
- ✓ National coverages for all six countries
- $\checkmark$  Near-real time processing (2019) and timely delivery
- ✓ Operational environment of pilot PAs
- ✓ Capacity building and training

ESA UNCLASSIFIED - For Official Use

#### Workplan for use case demonstration



#### **Proof of concept**

#### Full scale demonstration

- 1) Multi-national framework
- 2) Laboratory, up to national scale, in close collaboration with Paying Agencies
- 3) Open source deliveries for easy sharing & up-take of algorithms and know-how



ESA UNCLASSIFIED - For Official Use



#### Proof of concept - 1st evidence of Sentinels benefits

- 1) Identify **use cases** (i.e. payment schemes) to test the use of Sentinels data in a monitoring approach
- 2) Identify Sentinel-based markers that could be relevant for these use cases
- 3) **Produce** these Sentinel-based markers over the 6 pilot sites
- 4) **Implement** these markers in use cases, going to the compliance decision



#### Sentinel-based markers for CAP Monitoring



## 6 National Pilots: Data collection and pre-processing

- Earth Observation data National coverages:
  - Sentinel-1 (SAR, 20m, 6-day revisit)
  - Sentinel-2 (optical, 10 & 20m, 5-day revisit)
  - Landsat 8 (optical, 30m, 16-day revisit)
- Access to IACS data sets (LPIS, GSAA, OTSC) data through Collaboration Agreements with Paying Agencies:
  - Used for methods development and products assessment
  - Close collaboration with Paying Agencies to ensure correct understanding
- Very High Resolution EO imagery provided from DG-JRC (assessment purpose)
- Internal project activities to collect ground data

ESA UNCLASSIFIED - For Official Use

## Sen4CAP System – Automated Processing



ese

#### Crop type mapping for crop diversification monitoring - Netherlands

esa



#### Crop type mapping for crop diversification monitoring - Netherlands

esa



### Sentinels supporting crop diversification



#### Crop type mapping for crop diversification monitoring - Lithuania



#### Sentinel-based vegetation indicator as auxiliary data – Czech Republic

4 indicators





| ID   | NKOP_DPB    | AREA  | CONF_IDX | CT_DECL         | CT_PRED_1          | CT_CONF_1 | C_INDIC                     |
|------|-------------|-------|----------|-----------------|--------------------|-----------|-----------------------------|
| 5482 | 681104301/1 | 23275 | 0        | Maize           | Winter<br>rapeseed | 0,56      | Additional info<br>required |
| 6581 | 665114804/1 | 18086 | 1        | Winter<br>Wheat | Grassland          | 0,25      | Additional info required    |



ESA UNCLASSIFIED - For Official Use

💶 📲 🛌 📲 🖶 📲 🚟 🔚 📲 🔚 📲 🚍 🚍 📲 📥 🚳 📲 🚍 🚼 🛨 💥 🚘 🚺 European Space Agency

#### EFA Catch crop assessment – Czech Republic

RULE: Winter Catch Crop must be sown before 20 Sept. and must not be harvested before 31 Oct. During this period, crop coverage must not be mechanically or chemically removed or limited in growth.



#### Harvest - Visual check







20.06.2017 52A20170620T33UWB 03.06.2017 S2A20170603T33UWR

21.06.2017 LE720170621T190025







07.07.2017 LE720170707T190025

22.07.2017 LC820170722T191025 30.07.2017 S2A20170730T33UWR











08.09.2017



\*



18.09.2017 01.10.2017 11.11.2017 S2A20170918T33UWR S2A20171001T33UWR LC820171111T191025



#### **EFA Fallow land assessment – Italy**

RULE: Fallow land parcel must be represented by: bare land without vegetation; land with natural vegetation; seeded only for "green manure" (sporadic). Any cutting or other agronomic work remains forbidden. Must be in field from Jan to June (6 months).



#### Fallow land – Visual check



ESA UNCLASSIFIED - For Official Use



#### EFA Nitrogen fixing crop assessment – Spain

RULE: Crops must reach at least blooming state. Sowing density and the rest of tilling tasks have to be suitable and according to local agricultural habits.



ESA UNCLASSIFIED - For Official Use



#### **Grassland mowing detection – Czech Republic**





Not assessed Compliant No compliant (no mowing) Compliant (mowing in the period + other mowing) No compliant (mowing outside the period)

asa



#### Summary – Sen4CAP Use Cases

- Sentinels benefits for CAP monitoring demonstrated with *prototype* products
  - For IACS use cases: crop diversification, permanent grassland and EFA
  - Under specific assumptions in terms of parcels size, parcels geometry, etc.
  - Several ways identified to increase relevance of Sentinels markers:
    - Algorithms improvement
    - Interactions with PAs to better understand national cropping systems and regulations, and go to the holding-level
- Demonstration that Sentinel-based markers can be useful for CAP monitoring
  - Using S1 and S2 data (cloud computing)
  - Over 6 countries with diverse cropping systems, LPIS, landscape, etc.
  - Wall-to-wall coverage, from test sites up to national scale

ESA UNCLASSIFIED - For Official Use

### Towards PA's uptake of EO at National Scale

- Integration of Level 2, 3 and 4 Sen4CAP
  EO products & markers in PA's environment
- Visualization of data in Web interface
- National scale monitoring Assessment of cloud capabilities & requirements



ESA UNCLASSIFIED - For Official Use

#### National Agricultural Monitoring: Processing resources

Czech Italy Republic Czech Republic Input EO data (2016-2019) Italy Output L2 data (2016-2019) 26 TB 128 TB Output L3 data (2016-2019) 31 TB 137 TB 50 TB Pre-processing resources (ongoing) 14 TB Products & distribution resources 16 cores, 90 GB 48 cores, 230 GB (ongoing)

\*Average LPIS database volume: 0.1-10 GB

ESA UNCLASSIFIED - For Official Use

## OGC compliant web mapping service providing RGB imagery and simple indicators

URL - http://services.eocloud.sentinel-hub.com/v1/wms/c8d740dd-f9c0-4f6c-9a05-f2dabcfac982?

- Sentinel-2 L2A
  - True color, False color, Individual bands
- Landsat 8 L2A
  - True color, False color, Individual bands
- Vegetation Indeces
  - NDVI, LAI, Fcover, FAPAR

| 🚀 Create a new WMS connection ? 🗙 |                        |                                       |        |                                  |   |  |  |  |  |
|-----------------------------------|------------------------|---------------------------------------|--------|----------------------------------|---|--|--|--|--|
| Connection details                |                        |                                       |        |                                  |   |  |  |  |  |
|                                   | Name                   | Sen4CAP                               |        |                                  |   |  |  |  |  |
|                                   | URL                    | http://10.242.0.8:18080/v1/wms/c8d740 | )dd-f9 | c0-4f6c-9a05-f2dabcfac982        |   |  |  |  |  |
|                                   |                        | <br>[                                 | -      |                                  |   |  |  |  |  |
| ID                                |                        | Name                                  | V      | Title                            |   |  |  |  |  |
| Ξ                                 | ··· 0                  |                                       |        | Sentinel Hub WMS                 |   |  |  |  |  |
|                                   | ⊞ 1502                 | SEN4CAP_S2L3B.TIME                    |        | Sentinel 2 L3B - Tile time texts |   |  |  |  |  |
|                                   | <b>⊡</b> 1488          | SEN4CAP_S2L3B.OUTLINE                 |        | Sentinel 2 L3B - Tile outlines   |   |  |  |  |  |
|                                   | 🗄 1049                 | SEN4CAP_S2L3B.NDVI                    |        | Sentinel 2 L3B - NDVI            |   |  |  |  |  |
|                                   | ⊞ <sup></sup> 1041     | SEN4CAP_S2L3B.LAI                     |        | Sentinel 2 L3B - LAI             |   |  |  |  |  |
|                                   | ± 1509                 | SEN4CAP_S2L3B.ID                      |        | Sentinel 2 L3B - Tile ID texts   |   |  |  |  |  |
|                                   | ⊞ <sup></sup> 1481     | SEN4CAP_S2L3B.FILL                    |        | Sentinel 2 L3B - Tile fills      |   |  |  |  |  |
|                                   | ⊞ 1025                 | SEN4CAP_S2L3B.FAPAR                   |        | Sentinel 2 L3B - FAPAR           |   |  |  |  |  |
|                                   | i⊞… 1495               | SEN4CAP_S2L3B.DATE                    |        | Sentinel 2 L3B - Tile date texts | ; |  |  |  |  |
|                                   | ⊞ <sup></sup> 1033     | SEN4CAP_S2L3B.COVER                   |        | Sentinel 2 L3B - COVER           |   |  |  |  |  |
|                                   | ⊞ <b>927</b>           | SEN4CAP_S2L2A.TRUE_COLOR              |        | Sentinel 2 L2A - True color      |   |  |  |  |  |
|                                   | ⊞ <sup></sup> 1467     | SEN4CAP_S2L2A.TIME                    |        | Sentinel 2 L2A - Tile time texts |   |  |  |  |  |
|                                   | i∰… 1453               | SEN4CAP_S2L2A.OUTLINE                 |        | Sentinel 2 L2A - Tile outlines   |   |  |  |  |  |
|                                   | <b>⊞</b> 1474          | SEN4CAP_S2L2A.ID                      |        | Sentinel 2 L2A - Tile ID texts   |   |  |  |  |  |
|                                   | <b>⊞</b> … 1446        | SEN4CAP_S2L2A.FILL                    |        | Sentinel 2 L2A - Tile fills      |   |  |  |  |  |
|                                   | ⊞ <sup></sup> 932      | SEN4CAP_S2L2A.FALSE_COLOR             |        | Sentinel 2 L2A - False color     |   |  |  |  |  |
|                                   | <b>⊞</b> … <b>1460</b> | SEN4CAP_S2L2A.DATE                    |        | Sentinel 2 L2A - Tile date texts | 5 |  |  |  |  |
|                                   | ⊞ <sup></sup> 1017     | SEN4CAP_S2L2A.CLD                     |        | Sentinel 2 L2A - Cloud Mask      |   |  |  |  |  |
|                                   | ⊞ <b>993</b>           | SEN4CAP_S2L2A.B8A                     |        | Sentinel 2 L2A - Band B8A        |   |  |  |  |  |
|                                   | ⊞ <sup></sup> 1009     | SEN4CAP_S2L2A.B12                     |        | Sentinel 2 L2A - Band B12        |   |  |  |  |  |
|                                   | <b>⊡</b> … 1001        | SEN4CAP_S2L2A.B11                     |        | Sentinel 2 L2A - Band B11        |   |  |  |  |  |
|                                   | 🕀 <mark>985</mark>     | SEN4CAP_S2L2A.B08                     |        | Sentinel 2 L2A - Band B08        |   |  |  |  |  |
|                                   | 🕀 ··· 977              | SEN4CAP_S2L2A.B07                     |        | Sentinel 2 L2A - Band B07        |   |  |  |  |  |

ESA UNCLASSIFIED - For Official Use



#### WMS Service integrated in PAs environment

- Time filtering
- Configurable visualization
- Reprojection to local coordinate systems
- Customizable by country





## Visualisation tool – Implementation by country



esa



ESA UNCLASSIFIED - For Official Use



#### Visualisation tool - Datasets

Input datasets generated by Sen4CAP

- Cultivated crop type map
- Grassland mowing detection product
- Vegetation status indicators
- Agricultural practices monitoring
- Sentinel-2
- Landsat 8
- Sentinel-1
- Input datasets from PAs
- LPIS data
- Declarations data

| INFO   | CONTENT           | LAYER      | PERSONAL   |            |   |
|--------|-------------------|------------|------------|------------|---|
| Sen4C/ | AP_Lithuania      |            |            | ø          | Ð |
| Cult   | tivated crop typ  | e map (Ul  | R1)        |            | Í |
|        | Crop type map     | LT         |            | 14         | 0 |
| 10     | LT_LUT_Crop(      | Code       |            | <b>E</b> 4 | 0 |
| 10     | Crop_Category     | 1          |            | 4          | 0 |
|        | CropType_Cor      | fIndic     |            | E,         | 0 |
| 10     | CropType_Cor      | npIndic    |            | E.         | 0 |
| Gra    | ssland mowing     | product (  | UR2)       |            |   |
|        | Grassland mov     | ving LT    |            | 14         | 0 |
| 1      | Satellite_Missi   | on         |            | E.         | 0 |
| 1      | GrMow_Comp        | liancy     |            | E.         | 0 |
| Agr    | icultural practic | es monito  | ring (UR4) |            |   |
|        | Agricultural pra  | ctices LT  |            | 14         | 0 |
| 10     | Agr_Practice      |            |            | E4         | 0 |
| 1      | Catch_Crop_T      | ype        |            | <b>E</b> 4 | 0 |
| 10     | AgPr_Comp_Ir      | ndicator   |            | E.         | 0 |
| 10     | AgPr_Ind_Con      | d_Indicato | or         | E.         | 0 |
| 10     | AgPr_Flag         |            |            | E.         | 0 |
| In-S   | itu data          |            |            |            |   |
| Tes    | t site            |            |            |            |   |

| Vegetation status indicator (UR3) |   |
|-----------------------------------|---|
| 🗌 🚴 Sentinel-2 L3A - NDVI         | 0 |
| 🗌 🚴 Sentinel-2 L3A - LAI          | 0 |
| 🗌 🚴 Sentinel-2 L3A - FCover       | 0 |
| 🗌 🚴 Sentinel-2 L3A - FAPAR        | 0 |
| Sentinel-2                        |   |
| 🗌 🚴 Sentinel-2 L2A - True Color   | 0 |
| 🗌 🚴 Sentinel-2 L2A - False Color  | 0 |
| Landsat 8                         |   |
| 🗌 🚴 Landsat 8 L2A - True Color    | 0 |
| 🔲 🚴 Landsat 8 L2A - False Color   | 0 |

ESA UNCLASSIFIED - For Official Use

#### Visualisation tool – products metadata

#### Product description

- Year
- Type of agricultural practice
- Regulation
- Interpretation of
  regulation
- Description of fields

#### Legends

Codelists with descriptions



0.00

110100-0000

ESA UNCLASSIFIED - For Official Use

# Visualisation tool – view attributes of the parcel related to the selected layer



## Visualisation tool – Queries over multiple fields



ESA UNCLASSIFIED - For Official Use

## Visualisation tool – viewing results at farm level for Cesa compliance assessments

| 1003892612_1003892612_3        1003892612_1003892612_1        1003892612_1003892612_1        Advanced filter        Use all fields (AND)*        *        *        75 m |                     |                         |         |            |         |           |             |                |                           |                  |                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|---------|------------|---------|-----------|-------------|----------------|---------------------------|------------------|------------------------------|
| E N: 2588037.775                                                                                                                                                        | 5 7448846.171 55°   | 26'44.41" N 23°14'5     | 5.46" E |            |         |           | 1 973292610 | © 2018 Sinergi | ise d.o.o.   Data: terres | tris GmbH, OpenS | treetMap contributors        |
| Table of records for                                                                                                                                                    | or layer: Crop type | e map LT (Filtered)     |         |            |         |           |             | S Refresh      | Add selection set         | 🛃 Export layer   | 🗹 🍸 Filter 🗙                 |
| VALDA<br>(Holding no.)                                                                                                                                                  | KZS (Block<br>no.)  | LAUKO_NR<br>(Field no.) | Area    | Conformity | CT_decl | CT_pred_1 | CT_conf_1   | CT_pred_2      | CT_conf_2                 | Status           | C_Indic                      |
| 1003892612                                                                                                                                                              | 146452-5589         | 2                       | 6,398   | 1.0        | MNŠ     | MNŠ       | 0.161       | DOB            | 0.092                     | Yes              | Compliant                    |
| 1003892612                                                                                                                                                              | 145452-6380         | 1                       | 11,004  | 1.0        | MNŠ     | MNŠ       | 0.332       | DOB            | 0.163                     | Yes              | Compliant                    |
| 1003892612                                                                                                                                                              | 145451-5152         | ī                       | 8,550   | 1.0        | NMI     | AVI       | 0.227       | KVV            | 0.117                     | Yes              | Insufficient<br>evidence     |
| 1003892612                                                                                                                                                              | 145451-5768         | 1                       | 15,131  | 1.0        | KRŽ     | KVŽ       | 0.434       | KRŽ            | 0.19                      | Yes              | Expert-judgement<br>required |
| 1003892612                                                                                                                                                              | 146452-0763         | 3                       | 19,083  | 0.0        | MNŠ     | MNŠ       | 0.355       | DOB            | 0.129                     | Yes              | Compliant                    |
| 1003892612                                                                                                                                                              | 145452-8265         | 2                       | 18,000  | 0.0        | MNŠ     | MNŠ       | 0.318       | DOB            | 0.138                     | Yes              | Compliant                    |
| = •• •                                                                                                                                                                  |                     | $\pm 10.9$              | - 😑 🗖   |            |         |           |             |                | I+I                       | Europ            | ean Space Agency             |

# Visualisation tool – Visualize S2 and L8 data on chosen time = timely decisions



#### Visualisation tool – Time animation following crop dynamics



# Visualisation tool – NDVI/LAI/FCover/FAPAR indicator value averaged at the parcel-level





## From National to European scale



|                                             | Czech<br>Republic  | Italy               | Europe           |
|---------------------------------------------|--------------------|---------------------|------------------|
| Input EO data (2016-2019)                   | 26 TB              | 128 TB              | 3 PB             |
| Output L2 data (2016-<br>2019)              | 31 TB              | 137 TB              | 4 PB             |
| Output L3 data (2016-<br>2019)              | 14 TB              | 50 TB               | 1.5 PB           |
| Pre-processing resources (ongoing)          | 16 cores, 90<br>GB | 48 cores,<br>230 GB | 1000 cores, 6 TB |
| Products & distribution resources (ongoing) | 28 cores, 72<br>GB | 62 cores,<br>144 GB | 1000 cores, 3 TB |

ESA UNCLASSIFIED - For Official Use

## **Cloud Computing Approach**

- DIAS environment
  - Sentinel (and Landsat) data are there
    - No need to copy data
  - Infrastructure resources available (economy of scale)
  - PA's data inputs (security, privacy)
- Transparent selection of DIAS provider
  - Sentinel-1, Sentinel-2, Landsat 8
  - Europe
  - Long-term archive
  - Pre-processing ?
- Adaptation of EO tools required

• SNAP, Orfeo Toolbox ESA UNCLASSIFIED - For Official Use

## **Cloud Computing Recommendations**

- Raster data streamed over OGC WMS/WCS
  - Avoiding large downloads
  - Compute intensive tasks
  - Weekly of more frequent
  - Can be run by a 3<sup>rd</sup> party (DIAS?)
- Vector data downloaded as SHP and integrated in PA's environment
  - Alternative option WFS
  - weekly/monthly
  - can be run by a 3<sup>rd</sup> party or by PAs (in the cloud)

ESA UNCLASSIFIED - For Official Use

#### Perspectives – Sentinels for CAP

- First experiment of Sentinels contribution to CAP use cases tested across 6 countries directly assessed by the corresponding Paying Agencies
  - For crop diversification, EFA and permanent grassland using Sentinels-based markers
  - Using S1 and S2 data, based on cloud processing
  - Improvements expected from tuned algorithms and interactions with PAs based on concrete use cases
- Forthcoming experiment to run prototype using Sentinels and LPIS/GSAA at national scale in 6 different countries for the current CAP use cases and forthcoming CAP monitoring
- Open source tools tested, documented and demonstrated on cloud infrastructure (DIAS) available to the Member States and the CAP application
  - Generic approaches tunable to national/local cropping systems
  - Cloud-computing solution compatible for nationwide production
- Go one step forward to also provide relevant information supporting farmers during the season ESA UNCLASSIFIED - For Official Use