Sen4CAP Final User Workshop, 4 - 5 March 2021

New Tillage Detection functionality in the L4C Processor

common agricultural policy

ESA UNCLASSIFIED - For Official Use

European Space Agency

Introduction

- Terminology tilling and ploughing
 - Tilling: agricultural preparation of the soil by breaking the soil apart mechanically (preparing the soil for planting)
 - Ploughing: overturning and mashing of the soil to reveal the soil underneath the topsoil (refreshing the planting field)
 - Tilling happens in the spring season and Ploughing in fall

- Sen4CAP implementation (EO data response)
 - No difference is considered at a physical level (i.e. the land is lying undisturbed and then is suddenly disturbed)
 - Tillage is used as a single term that covers all the physical and temporal variability of tilling & ploughing practices

ESA UNCLASSIFIED - For Official Use

Sen4CAP Final User Workshop | 4-5 March 2021 | Slide 2

Preparatory activities

- Agreement with two pilot countries interested in collaboration during tillage processor development:
 - 1) Lithuania
 - 2) Spain (Castilla y Leon)
- Assessment of farming practices relevant to tillage:
 - \circ $\;$ when the tillage is usually applied
 - o at which frequency
 - what is the parcel cover before and after the tillage (bare soil vs. vegetation cover)?
 - do parcels stay unmanaged for some time before and after the tillage?
 - o etc.

ESA UNCLASSIFIED - For Official Use

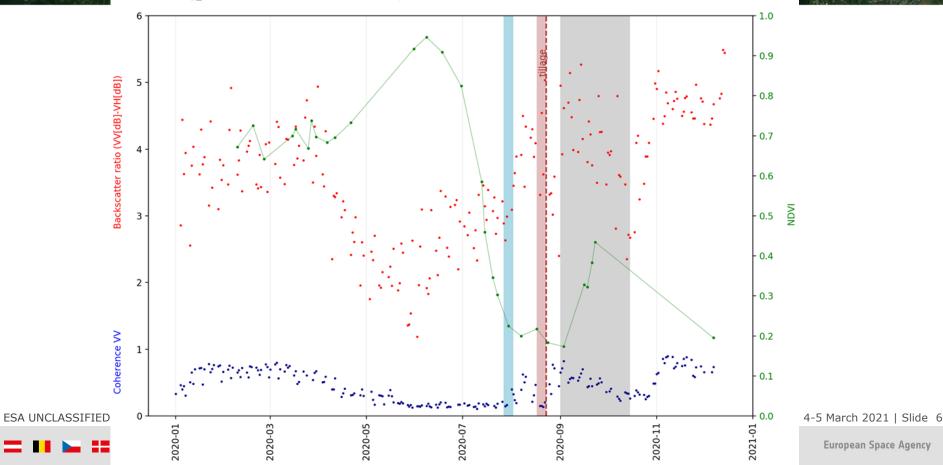
Sen4CAP Final User Workshop | 4-5 March 2021 | Slide 3

Tillage detection processor - concept

- Same approach as agricultural practices monitoring (automated analysis of EO-based temporal profiles through "harvest" markers)
- Focus on **tillage applied after the harvest** of the main crop
- The implementation will follow **continuous monitoring** concept (similarly as harvest detection: weekly evaluation)
- The goal is to provide **generic solution** that could be applied in any EU country (no country specific tailoring)

ESA UNCLASSIFIED - For Official Use

Tillage detection processor - methodology


- Use of "harvest" markers (M1 M5) + detection of harvest as pre-condition
- At a purely theoretical-level:
 - (1) NDVI should remain low throughout this process
 - (2) The backscatter ratio should remain high/increasing throughout this process
 - (3) Coherence should increase during/after harvest and decrease after ploughing/tilling

MARKERS FOR HARVEST				
M1	Presence of vegetation in the main vegetation season	High values of NDVI		
M2	Loss of vegetation	Break in NDVI (decrease)		
M3	Loss of vegetation	Break in backscatter ratio (increase)		
M4	Low/no vegetation	High values of backscatter ratio		
M5		Break in VV Coherence (increase) or high values of VV Coherence		

= 11 🛌 == + 11 = 🚝 = 11 11 = = = 🔚 🖬 🖬 = 11 = = 🕷 🛥

Tillage detection - example

id: 49452, orig_id = 1011868272-044513-1518-2, practice: 2020-09-01 - 2020-10-15, harvest: 2020-07-27 - 2020-08-02

Reference datasets - Spain (Castilla y Leon)

• 2018: farmers reports about the dates of applied practices:

harvest/tillage/sowing

Parcels to be checked on Planet imagery.

• 2020: recorded data from GPS tracking of agro machinery in the period of 25.-30.9.

No information about the type of activity (harvest/tillage/sowing).

ESA UNCLASSIFIED - For Official Use

Sen4CAP Final User Workshop | 4-5 March 2021 | Slide 7

□ II ≥ II = + II = ⊆ □ II II = □ II = II = II = II X

Reference datasets – Lithuania

- The PA provided the photographs acquired by farmers to document parcel status at the date of acquisition of the photograph
- We have interpreted photographs to record the parcel status
- If the parcel was interpreted as plowed it means the tillage had to be applied before the acquisition date of the photograph

Sen4CAP Final User Workshop | 4-5 March 2021 | Slide 8

ESA UNCLASSIFIED - For Official Use

Tillage detection – Validation results

Lithuania – geotagged photos

Category	No of parcels	Accuracy	
[reference - detected]		Category	Cummulative
0 - 1 week	251	71,7%	
2 weeks	50	14,3%	86,0%
3 weeks	12	3,4%	89,4%
> 3 weeks	14	4,0%	93,4%
Not detected	23	6,6%	100,0%
Total	350	100,0%	

Castilla y Leon – farmers reports

Category	No of parcels	Accuracy	
[reference - detected]		Category	Cummulative
0 - 1 week	11	33,3%	
2 weeks	8	24,2%	57,6%
3 weeks	2	6,1%	63,6%
> 3 weeks	12	36,4%	100,0%
Not detected	0	0,0%	
Total	33	100,0%	

Lithuania – no tillage regime

Parcels under no tillage regime				
Category	No of parcels	Share		
Tillage not detected	1662	32,0%		
Tillage detected	3529	68,0%		
Total	5191	100,0%		

Castilla y Leon – GPS tracking of agro machinery

Category	No of	Accuracy	
[harvest or tillage detected]	parcels	Category	Cummulative
0 - 1 week	193	38,0%	
2 weeks	76	15,0%	53,0%
> 2 weeks	16	3,1%	56,1%
Harvest or tillage not detected	223	43,9%	100,0%
Total	508	100,0%	

•

ESA UNCLASSIFIED - For Official Use

Sen4CAP Final User Workshop | 4-5 March 2021 | Slide 9

Tillage detection – Validation comments

• Multiple drops for coherence marker - more activities occur after the harvest (e.g. harvest residuals management) -> the detector likely detects the first one as tillage application *

- High rate of tillage detection (see *)
- Poor results for no tillage parcels (false detections see *)
- Consistency and reliability of reference data
- Two coherence thresholds introduced in the system – may be adjusted by the user to reflect local conditions (sensitivity to coherence drops)

0.5 0.4 0.3 0.2

ESA UNCLASSIFIED - For Official Use

Tillage detection – live demo

ESA UNCLASSIFIED - For Official Use

Sen4CAP Final User Workshop | 4-5 March 2021 | Slide 11

•

European Space Agency