

Welcome to the 8th webinar

The webinar will last around 1h

The slides will be available on the Sen4CAP website in the coming 48 hrs (http://esa-sen4cap.org/)

Presenters:

Sophie Bontemps & Diane Heymans from *UCLouvain* Dominique Laurent from *IGN France*

Tor Nielsen from *Planet*

Members of the consortium available to answer your questions

Université catholique de Louvain

ESA UNCLASSIFIED - For Official Use

European Space Agency

*

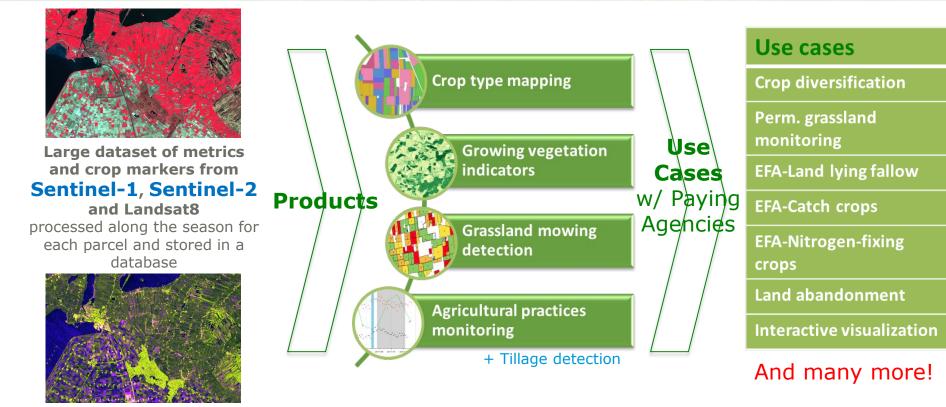
Webinar outline

- Sen4CAP overview
- Sen4CAP evolution
 - Planning for version 3.0
 - Sen4CAP activities continuation in the AVL framework
- NIVA project building on top of Sen4CAP (IGN France)
- Planet Fusion for Checks by Monitoring (Planet)
- Next events

ESA UNCLASSIFIED - For Official Use

8th Sen4CAP Webinar, 14 September 2021

Webinar outline


- Sen4CAP overview
- Sen4CAP evolution
 - Planning for version 3.0
 - Sen4CAP activities continuation in the AVL framework
- NIVA project building on top of Sen4CAP (IGN France)
- Planet Fusion for Checks by Monitoring (Planet)
- Next events

ESA UNCLASSIFIED - For Official Use

8th Sen4CAP Webinar, 14 September 2021

Sentinel-derived markers and products assessed through selected use cases

ESA UNCLASSIFIED - For Official Use

8th Sen4CAP Webinar, 14 September 2021

Sen4CAP: from an ESA project to a toolbox

esa

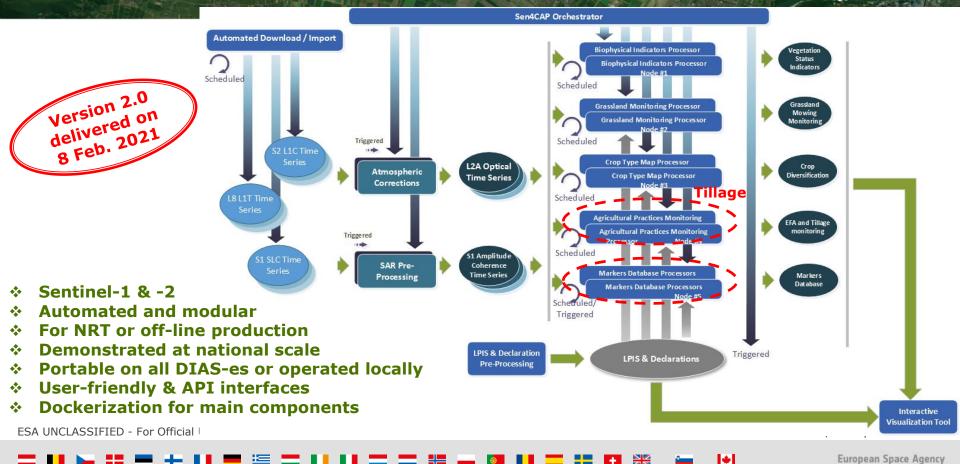
Design and prototyping 2017 – local sites Demonstration and validation 2018 & 2019 – national NRT

User uptake and system evolution 2020, 2021 ...

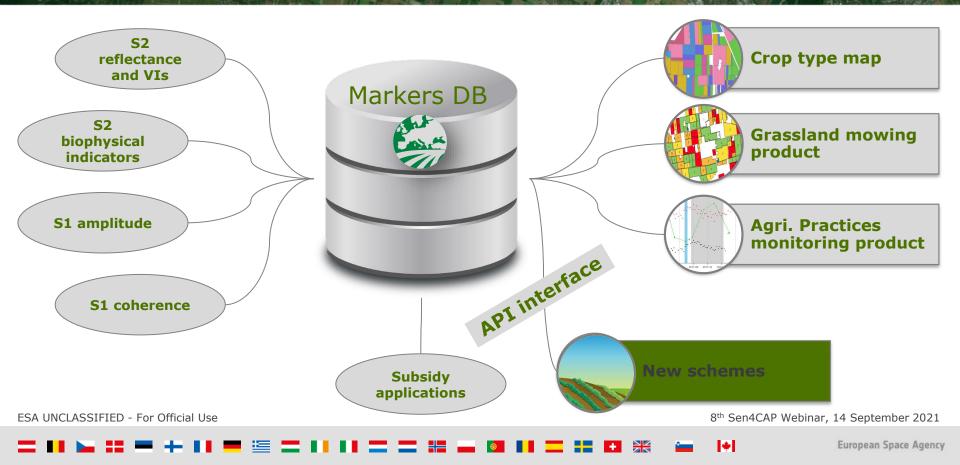
- $\circ~$ Use cases selection
- **o** Products Specifications
- **o Benchmarked Methods**
- Algo & System design
- Prototype products
- Validation

- Use cases demonstration
- National scale
- \circ Continuous monitoring
- Validation & Fitnessto-use assessment
- Capacity building and training
- System qualification

- 330 downloads and 20+ Paying Agencies testing the system on CREODIAS
- Training with 44 participants from 20 different countries
- Webinars every month


8th Sen4CAP Webinar,

- Support to users
- System evolution



Sen4CAP – An open-source system

Markers and products assessed through selected use CS cases but available for many other applications

Sen4CAP is free and open source Based on open source existing software

² Under GNU-GPL License

Based on **Orfeo ToolBox** framework

Cluster-ready architecture for distributed processing

Integration of **SNAP** tools and processing chains

Operational system required : **CentOS7** (GNU/LINUX)

PostgreSQL and PostGIS implementation

ESA UNCLASSIFIED - For Official Use

8th Sen4CAP Webinar, 14 September 2021

= II 🛏 ## II = 🚝 = II II = = ## 🛶 🔯 II = ## ## ##

Sen4CAP system : simple parametrization and subsidy application upload

esa

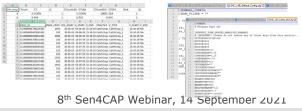
Before the monitoring period Monitoring period

System initialization

End of the season...

Sen4CAP system : main parameters settings	
Area of Interest	Shapefile to be uploaded
Monitoring period	Start and end dates to be defined
S1+S2 / S1+S2+L8	L8 to be selected

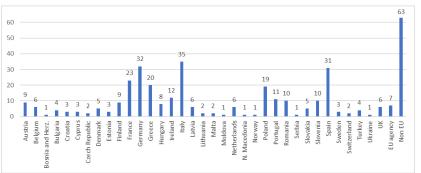
Subsidy application

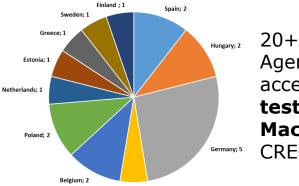


Upload data

Sen4CAP system : data from PA	
Subsidy application (shp)	Subsidy application layer (shapefile)
Tables and config files (csv)	L4A crop code LUT L4B config file L4C config file + agri practices tables

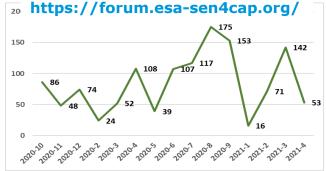
Tables and config files




ESA UNCLASSIFIED - For Official Use

User community & Support

370 downloads since November 2019



Denmark: 1

20+ Paying Agencies accessing **test Virtual Machines** on CREODIAS

Online forum 492 posts – 100 users

Webinars and Q&A sessions Hands-on & online trainings All ressources online

> http://esasen4cap.org/content /presentations

P Webinar, 14 September 2021

■ II ≥ II = + II = ⊆ II II = Ξ II = Ø II = II W

Webinar outline

- Sen4CAP overview
- Sen4CAP evolution
 - Planning for version 3.0
 - Sen4CAP activities continuation in the AVL framework
- NIVA project building on top of Sen4CAP (IGN France)
- Planet Fusion for Checks by Monitoring (Planet)
- Next events

ESA UNCLASSIFIED - For Official Use

8th Sen4CAP Webinar, 14 September 2021

Version 2.0 released on the 8th February 2021

_

BETA version

Only available for the PAs

Version 1.0 release candidate Open-source Possibility for the PAs to access a test machine with the system

Version 1.1

1st consolidated version

Big evolutions:

- Corrections in the advanced processors
- Sen2Cor L2A compatible

...

Move of the system database to a docker container

Version 1.2

Mainly corrections, adaptations and improvements based on project and user's experience

Version 1.3

NOV 2020

Mainly corrections, adaptations and improvements based on project and user's experience

Version 2.0

Big evolutions:

Markers database

February 2021

- Tillage processor
- Dockerization

...

+

8th Sen4CAP Webinar, 14 September 2021

ESA UNCLASSIFIED - For Official Use

Version 3.0 planned for October 2021

Version 3.0

Big evolution:

- new web interface

more comprehensive markers DB Added

- New web interface
 - Fully implemented in HTML5 and JavaScript (no server-side rendering)
 - \circ \quad Visualization of parcels and markers in the web interface
 - o Improved raster visualization in the web interface
 - Web interface configurator

• **More comprehensive markers DB -** users will have the option to extract also:

- The reflectance markers for the S2 bands; the bands for which the markers are extracted will be configurable (none by default)
- The number of valid pixels that were used for computing the mean and stdev for each parcel, for each acquisition
- Secured Sen4CAP services via HTTPS and authentication tokens usage

ESA UNCLASSIFIED - For Official Use

8th Sen4CAP Webinar, 14 September 2021

□ II ≥ II = + II = ≥ □ II II = □ H = 0 II = II H

- Continuing Sen4CAP activities funded by ESA:
 - 1) User Support: website, forum, Q&A sessions when needed, training, webinars

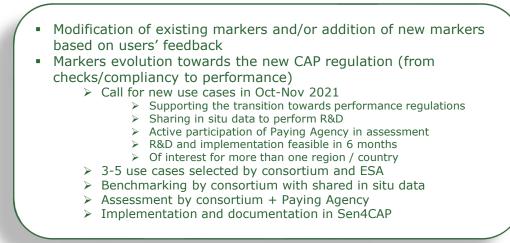
ESA UNCLASSIFIED - For Official Use

8th Sen4CAP Webinar, 14 September 2021

· = ■ ► = = + ■ = ≡ = ■ ■ = = = = = ■ ■ ■ ■ = = = ■ ₩ · •

- Continuing Sen4CAP activities funded by ESA:
 - 1) User Support: website, forum, Q&A sessions when needed, training, webinars
 - 2) System evolution:
 - a) System maintenance and evolution

•	Possibility to compute M1-M5 markers independently from the L4C
	processor


- Simplification of the L4C input tables
- Add more data sources
- Crop classification possible without a declared crop type
- System maintenance operation visible in the web interface
- Maintenance & bug corrections
- Sen4CAP Services REST API documentation
- To be continued

ESA UNCLASSIFIED - For Official Use

8th Sen4CAP Webinar, 14 September 2021

- Continuing Sen4CAP activities funded by ESA:
 - 1) User Support: website, forum, Q&A sessions when needed, training, webinars
 - 2) System evolution:
 - a) System maintenance and evolution
 - b) Markers database evolution

ESA UNCLASSIFIED - For Official Use

8th Sen4CAP Webinar, 14 September 2021

- Continuing Sen4CAP activities funded by ESA:
 - 1) User Support: website, forum, Q&A sessions when needed, training, webinars
 - 2) System evolution:
 - a) System maintenance and evolution
 - b) Markers database evolution
 - c) Sen4CAP integration in ESA Agricultural Virtual Lab

Sen4CAP as a standalone toolbox but also as an AVL service

ESA UNCLASSIFIED - For Official Use

Webinar outline

- Sen4CAP overview
- Sen4CAP evolution
 - Planning for version 3.0
 - Sen4CAP activities continuation in the AVL framework
- NIVA project building on top of Sen4CAP (IGN France)
- Planet Fusion for Checks by Monitoring (Planet)
- Next events

ESA UNCLASSIFIED - For Official Use

8th Sen4CAP Webinar, 14 September 2021

· = ■ ► = = + ■ = = = = ■ = = = = = = ■ ■ ■ ■ = = = ■ ■ ■

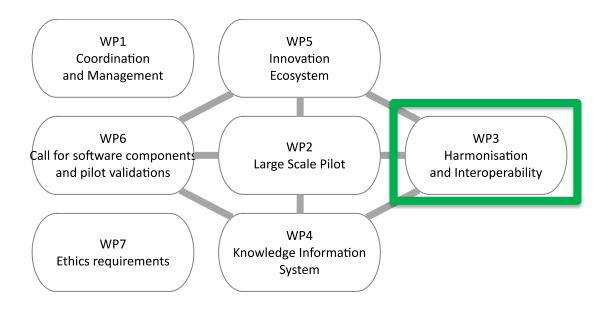
NIVA project building on top of Sen4CAP

Sen4CAP webinar – 14/09/2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 842009

The NIVA project

- NIVA: New IACS Vision in Action
- H2020 project
- Objectives:


-To develop e-tools to modernise the CAP

-To broader reuse of IACS data

- Consortium
 - 9 Paying Agencies 27 partners
 - technical partners -
 - 3 years project (June 2019 to

Aay 2022)

The NIVA project

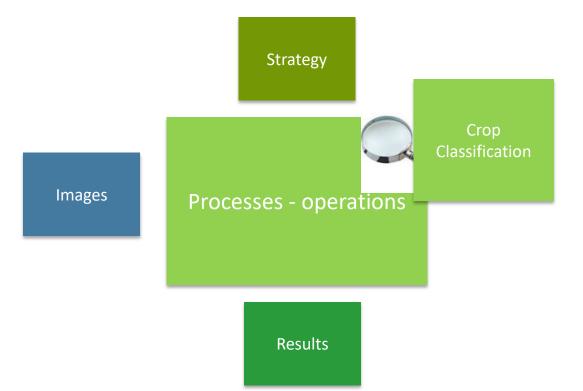
(Main) source of today presentation

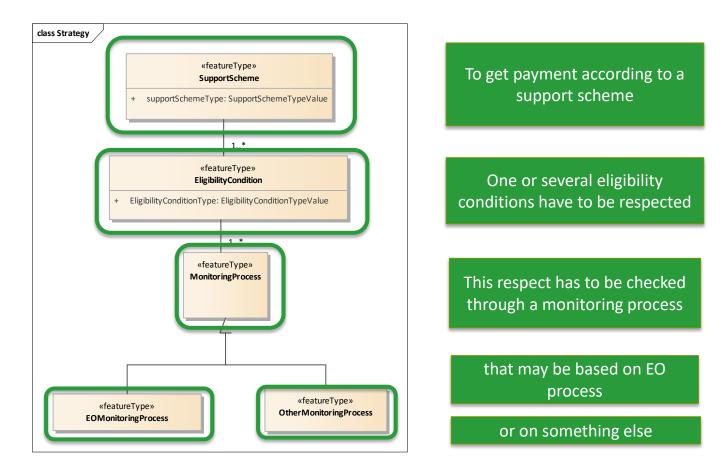
Data model Base types for EO monitoring

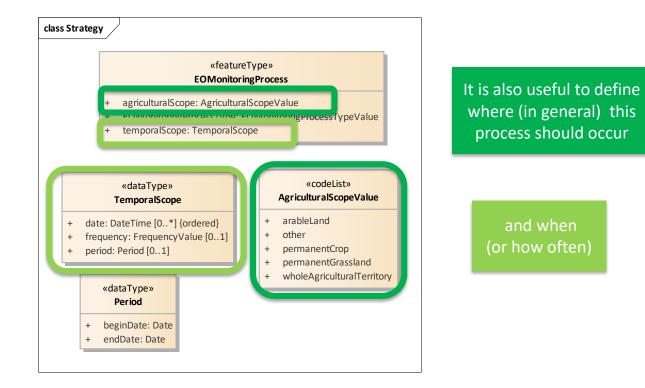
What is it?

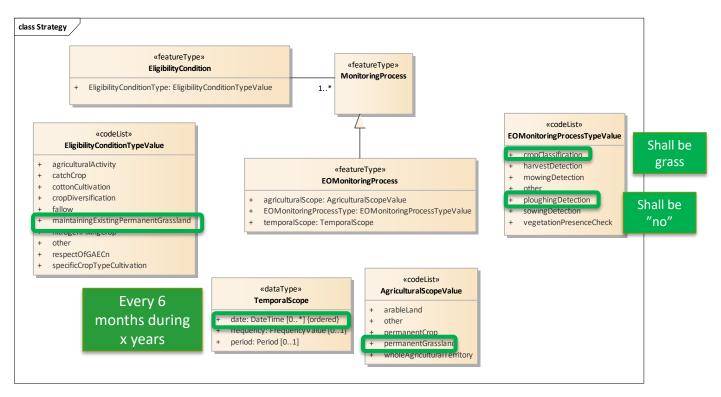
- A conceptual data model in UML (Unified Modeling Language)
- An attempt to provide a structured way to describe EO monitoring processes
 - Present steps and the possible options to be considered
 - No recommendation about a specific method to be chosen
- Model is limited to « Base types »
 - It is not about modelling whole AMS

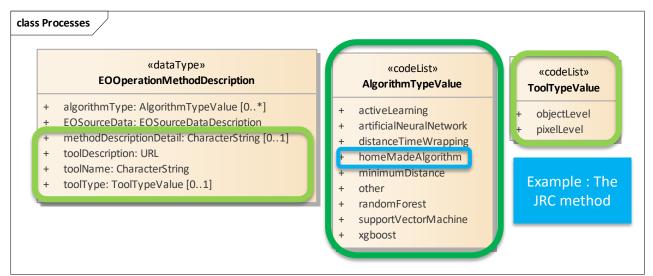
What are the sources?


- Experiences on EO monitoring
 - Sen4CAP
 - National experimentations (IGN)
 - Various presentations on EO monitoring


- Structuration and modeling work
 - In the NIVA context

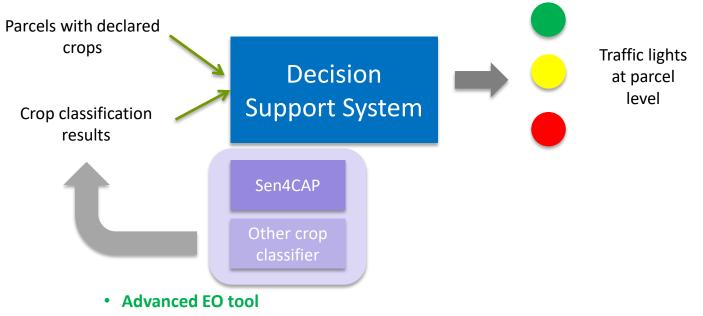



How does the model look like?


• The model is composed of 5 packages

A key information is the algorithm used in the EO monitoring operation.

More detailed information about the method and the tool is also useful.


Code list is not exhaustive. Help welcome

What are the benefits of this model?

- Internal benefit for NIVA
 - Use Case (UC1a) about EO monitoring & traffic lights
 - Initial plan was to develop a crop classifier
 - But we discovered in November 2019 that it was already done by Sen4CAP
 - First version of the UML model was designed to help the UC1a team to redesign their plans
 - Avoid duplication of efforts
 - Build something missing or adding value

What are the benefits of this model?

- What NIVA has done to complement Sen4CAP
 - Decision Support System

- Specific issues (fallow, Mediterranean grasslands, small parcels ...)

What may be the benefits of this model?

- Contribution to capacity building (PA)
 - Be aware of the various steps and options

 Starting point to document the EO monitoring process

- Contribution to benchmark studies
 - Make clear what is common and what is different between several methods

Where to find this model?

- First official version available on NIVA website
 - <u>https://www.niva4cap.eu/deliverables/</u>
 - Document D3.2 Common semantic model M12
- Current non-official version:
 - Send me an e-mail to get it (<u>dominique.laurent@ign.fr</u>)
 - Comments also welcome (work in progress)
- Final official version will be available on NIVA web site by end of the project (May or November 2022)
 - <u>https://www.niva4cap.eu/deliverables/</u>
 - Document D3.2 Common semantic model M36 (or M42)

Access to EO data

Context

- EO monitoring requires to deal with satellite images (mainly Sentinel)
 - Freely available in theory
 - But whose access and preprocess raise lots of issues in practice
- Lots of discussions within NIVA (and between NIVA and Sen4CAP)
 - Complex issue that no one was fully understanding
- => Something had to be done to improve the situation and get better common understanding

Context

- Deliverable about standardised connections between IACS and other applications (D3.5)
 - Decision to focus on 2 main topics
 - Access to EO data
 - Exchanges between IACS and FMIS
 - Content about EO data
 - Basic knowledge about satellite images and pre-processes
 - Capitalisation of experiences
 - by NIVA project
 - by NIVA partners (at national level)
 - other (conferences ...)

Basic knowledge

- Satellite images main characteristics
 - Optical (Sentinel-2, Landsat-8, HHR)
 - Radar (Sentinel-1)
- Preprocesses, different levels of products, temporal series
 - Optical
 - Radar

Make S-1 data less mysterious

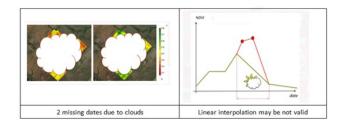
Basic knowledge

- Access to EO data
 - Explain the issue:
 - Access through ESA Hub not so easy
 - Need for storage and computation power (big volume of data)
 - Provide an overview of possible solutions
 - Alternative ways to get Sentinel images
 - Possible infrastructures (DIAS, other clouds, in-house ...)

Example 1: DIAS assessment (e-GEOS)

	CREODIAS	Mundi	ONDA	Sobloo	WEKEO
Sentinel 2	L1C: full archive L2A: Orderable (also non- ESA) rolling cache 1PetaByte	L1C: last 12 months L2A: last 48 months (only Europe data)	L1C: full ESA archive L2A: full ESA archive	L1C, L2A: orderable, available last 9 months	L1C: full metadata, orderable
Sentinel 1	SLC: full archive in EU, 6 month worldwide, GRD: full archive		Full archive for SLC and GRD. Part of the archive are on cold storage (delayed retrieval available)	SLC, GRD: orderable, available last 9 months	GRD, SLC: full metadata orderable
Landsat 5/7/8	Landsat 5/7/8 full archive over Europe	Landsat 7/8 orderable	Available since 04/2018 (for Europe)	Landsat 8 On- demand	-
Missing/other data retrieval	Ordering/Caching mechanism available	Missing L2A can be retrieved from ESA or processed if not available	Missing data can be Retrieved and hosted in native format. Available VHR commercial data (orderable)	Spot sample data available/orderable	Many datasets from Climate/Meteorology

Choice of CREODIAS (compatibility with Sen4CAP among main selection criteria)


- Example 2: installing Sen4CAP
 - Experience by OPEKEPE (Greece)
 - To get the crop classification results necessary for the NIVA Decision
 Support System
 - First test with CREODIAS virtual machine
 - Second test with local installation
 - Experience by ASP (France)
 - To get NDVI temporal series (for NIVA environmental indicators)
 - Too complex => alternative solution was preferred

- Example 3: developing Open EO API
 - The Open EO API standard specifies how to:
 - discover which Earth observation data and processes are available at cloud back-ends
 - build processing graphs (list of jobs)
 - consume such services (run the predefined processing graphs)
 - Some Open EO based micro-services developed by NIVA on top of Sen4CAP
 - PA installs Sen4CAP
 - The Open EO avoids data file transfer and enables system-to-system data exchange

- Example 4: quality
 - Temporal series (cloud issues)
 - Document the gaps (NIVA Copernicus phenology services)
 - Use markers from S2 and from S1 (Sen4CAP)
 - Fill S2 temporal series with S1 (research in IGN)
 - From pixels to parcels
 - Boundary pixels
 - Minimum number of pixels
 - Parcel heterogeneity

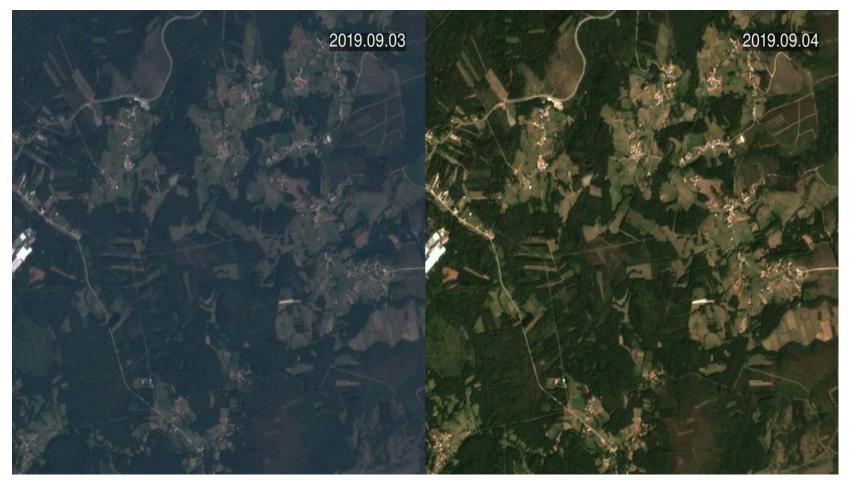
Where to find this document?

- Should be available soon on NIVA website
 - <u>https://www.niva4cap.eu/deliverables/</u>
 - Document D3.5 Recommendations for standardised connections between IACS and other applications
- Target readers
 - General chapters (basic knowledge + general recommendations): everyone
 - Feed-back from experiences: more expert or more motivated readers!

Thank you for your attention!

This project has received funding from the european union's horizon 2020 research and innovation programme under grant agreement no. 842009

Webinar outline


- Sen4CAP overview
- Sen4CAP evolution
 - Planning for version 3.0
 - Sen4CAP activities continuation in the AVL framework
- NIVA project building on top of Sen4CAP (IGN France)
- Planet Fusion for Checks by Monitoring (Planet)
- Next events

ESA UNCLASSIFIED - For Official Use

8th Sen4CAP Webinar, 14 September 2021

FUSION

PlanetScope Harmonised to Sentinel 2 For Checks by Monitoring (CbM)

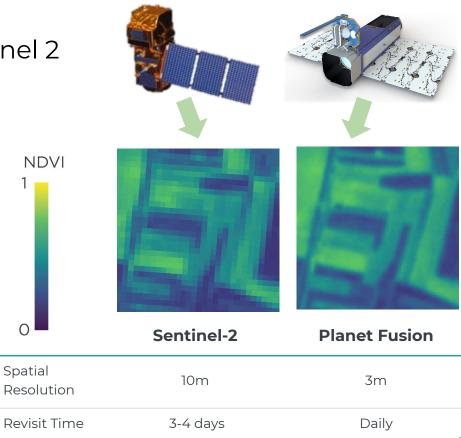
Galicia, Spain

FUSION

PlanetScope Harmonised to Sentinel 2

The Best of Both Worlds

- → <u>Sentinel-2</u> Golden Standard data quality
- → <u>PlanetScope</u> High spatial and temporal resolution


Harmonisation Process

- → Application of CESTEM machine learning process
- → Radiometric and Geometric Adjustments

utilizing Planet, Landsat and MODIS data

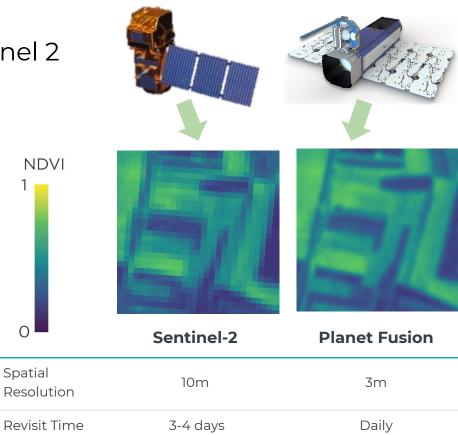
→ Atmospheric Corrections and Cloud/Gap Removal

A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM)

TFR Rasmus Houborg^{8,*}, Matthew F. McCabe^b

FUSION

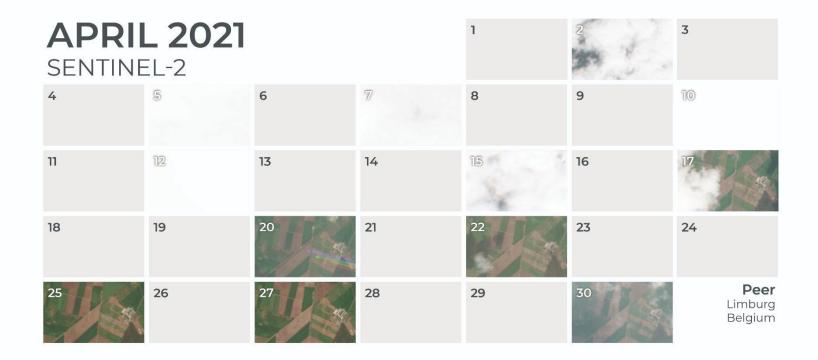
PlanetScope Harmonised to Sentinel 2


Key Specifications

- → Radiometrically Sentinel-2 comparable
- → Analysis Ready Data (ARD)
- → Cloud & Gap Free
- → 3 meter spatial resolution

utilizing Planet, Landsat and MODIS data

→ Daily coverage of all EU Member States


A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM)

VIER Rasmus Houborg^{a,*}, Matthew F. McCabe^b


Everyday - Everywhere

Daily Cloud and Gap Free

Everyday - Everywhere

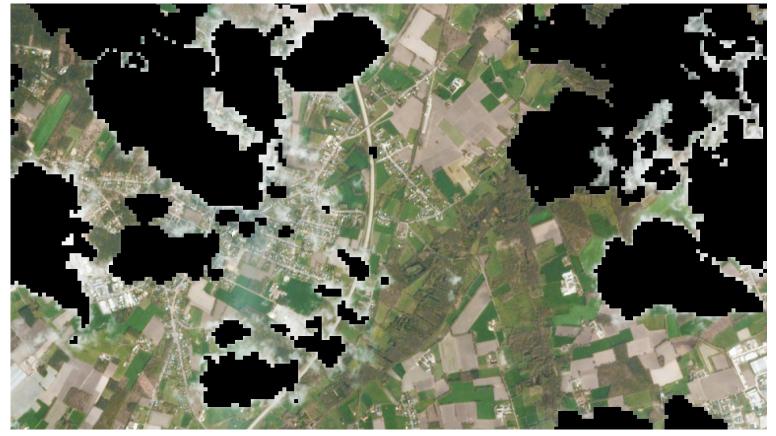
Daily Cloud and Gap Free

Everyday - Everywhere

Conto -

Daily Cloud and Gap Free

Cloud Removal

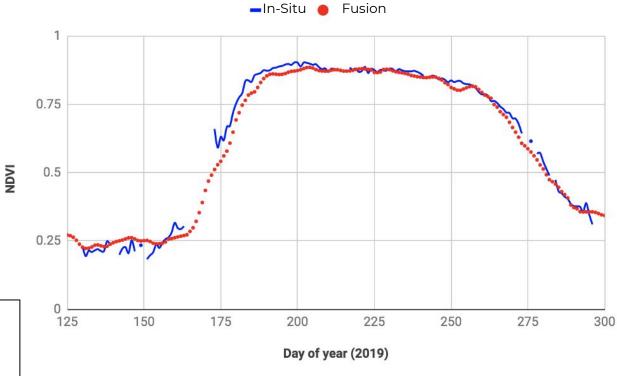

Step 1: Identify clouds and cloud shadows

Cloud Removal

Step 2: Apply cloud mask

Cloud Removal

Step 3: Apply predicted values based on most recent observations


DECEMBER 2020 Hechtel-Eksel, Limburg, Belgium

In-Situ Validation

Comparison against Arable Mark Spectrometers

Arable Mark Spetrometers are located in the field to collect ground truth on plant phenology

p

PlanetScope Fusion for Inconclusive Parcels

Early Results for Checks by Monitoring (CbM)

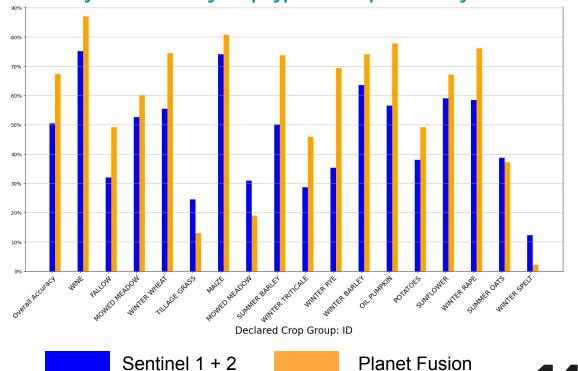
Small Parcels in Austria

Austria has 906.611 small parcels (112.452 ha) that cannot be satisfactorily processed by using Sentinel-2.

Small parcels are (JRC definition) too small to fit 8 Sentinel-2 pixel centres inside with inner 5m buffer and less than 60% pixel loss.

Fusion Pilot on 29.323 representative small parcels with ground truth from year 2020.

EO-WIDGET Beta-App (OGD 2020 - Planet Fusion)

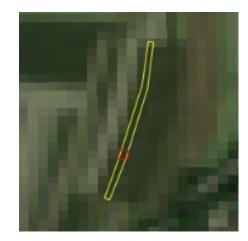


Small Parcels in Austria

Applying a crop classification marker

Accuracy & F1-Scores by Crop type - small parcels only

Achieved Crop type prediction quality for Small Parcels with Planet Fusion data enables automated processing within Checks by Monitoring (CbM)


Mid Season(2021) Results

Narrow Parcels in Slovenia

Automated Part of Checks by Monitoring (CbM)

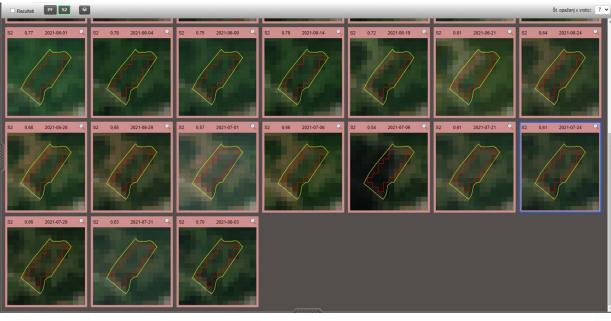
Slovenia has 191.324 small and narrow parcels that cannot be processed by Sentinel-2.

By using PlanetScope Fusion ARKTRP was able to process these claims to the Basic Payment Scheme (BPS) under the automated part of Checks by Monitoring (CbM)

Narrow parcel example

SINERGISE

Extensive Olive Strawberrv No Arable Stock Greenhouses Vineyards Hops Grassland Orchards TOTAL claim orchards land nurseries fields trees 165.092 Green 408 597 6,332 12 4,229 61,561 90,191 734 909 2 117 0 273 1,898 8 2,380 5,652 15,447 220 283 4 67 26,232 TOTAL 408 870 8,230 6,609 67,213 105,638 6 184 191,324 20 954 1.192

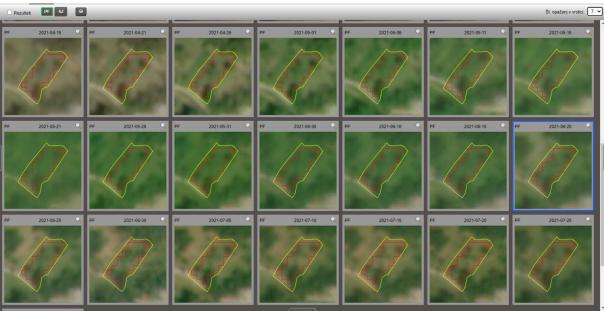


Narrow Parcels in Slovenia

Expert Judgement part of Checks by Monitoring (CbM)

Sentinel-2 Time Series - Not able to identify mowing

Orchard Example



Narrow Parcels in Slovenia

Expert Judgement part of Checks by Monitoring (CbM)

Planet Fusion Time Series - Mowing Identified

Orchard Example

THANK YOU FOR LISTENING

Want to learn more? tor@planet.com

Webinar outline

- Sen4CAP overview
- Sen4CAP evolution
 - Planning for version 3.0
 - Sen4CAP activities continuation in the AVL framework
- NIVA project building on top of Sen4CAP (IGN France)
- Planet Fusion for Checks by Monitoring (Planet)
- Next events

ESA UNCLASSIFIED - For Official Use

8th Sen4CAP Webinar, 14 September 2021

· = ■ ▶ = = + ■ + ■ ≡ = 1 ■ ■ = = = = ₩ ₩ ₩ ₩

European Space Agency

Next events

- **System 3.0** released in October 2021 (you will be informed by email)
- Next webinar on 2 November 2021
- Your suggestions ???

ESA UNCLASSIFIED - For Official Use

8th Sen4CAP Webinar, 14 September 2021

•

Thank you for your attention and your contribution

1

common and cultural policy

